
DesignandAlgebraic
ImplementationofaFunctional

ProgrammingLanguage

BachelorThesis

Nicolas Lenz
2020-07-09

(Updated version, created 2022-06-20 15:52)

TU Dortmund University
Department of Computer Science
Chair 14 for Software Engineering

Prof. Dr. Jakob Rehof
Christoph Stahl, M. Sc.

Design and Algebraic Implementation of a Functional Programming Language Contents

Contents

1 Introduction 4
1.1 Structure . 5

2 Theoretical Foundation 6
2.1 Simply Typed Lambda Calculus . 6
2.2 Dependently Typed Lambda Calculus 13
2.3 De Bruijn Indices . 18
2.4 Algebraic Modeling . 20
2.5 Custom Data Types and Eliminators . 29

3 Methods 32
3.1 Haskell . 32
3.2 Parsing . 33
3.3 Shell . 34
3.4 Algebraic Modeling . 35

4 Design 39
4.1 Design Goals . 39
4.2 Architecture . 39
4.3 Terms . 40
4.4 Programs . 44

5 Implementation 47
5.1 Abstract Syntax Tree . 47
5.2 Parser . 48
5.3 Compilation . 50
5.4 Evaluator . 51
5.5 Type Checker . 55
5.6 Frontends . 57

2

Design and Algebraic Implementation of a Functional Programming Language Contents

6 Evaluation 58
6.1 Usage . 58
6.2 Discussion and Outlook . 61

7 Conclusion 63

References 64

This work is freely available under a
Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0)

license.

The document’s source code can be found at
https://git.eisfunke.com/research/thesis-bachelor.

3

https://creativecommons.org/licenses/by-sa/4.0/
https://git.eisfunke.com/research/thesis-bachelor

Design and Algebraic Implementation of a Functional Programming Language Introduction

1 Introduction

In this thesis a basic functional programming language, named Lightfold, with a de-
pendent type system is designed and implemented based on a previously established
theoretical foundation using lambda calculus and algebraic modeling techniques.

Dependent typing allows types to depend on values, so that return types of functions can
be computed from their input value. This enables writing safe programs by assigning
types to functions and data structures for which that would not be possible in a non-
dependent type system.

The implementation consists of multiple parts. The parser is based on monadic parsing:
Monadic combinators are used to compose complex parsers from simpler ones.

The compiler that translates the parsed abstract syntax tree into a core language is
constructed following the principles of algebraic modeling, a generic and abstract
approach to specifying the structure and interpretation of data types while leaving the
interpretation open. Algebraic modeling allows the generalization of fold functions
from lists to arbitrary data types as well. These capabilities are employed to implement
a compiler infrastruture that can be repurposed for different output formats with little
change. The implementation of the compiler logic itself can be kept concise thanks to
the repetitive code being abstracted away.

The internal representation of Lightfold is based on the dependently typed lambda
calculus. It utilizes de Bruijn indices for unambiguous variable representation and a
bidirectional type system that combines type checking and type inference so that less
type annotations are required. This core language is processed through a type checker
to ensure correct typing and an evaluator to compute the results of programs.

Two frontends for using the language are provided: an interpreter, reading input from
a file, and a shell for reading input interactively.

This thesis intends to give a practical example of a low-complexity dependently typed
language with simple and understandable code to show the viability of this approach to
typing. Furthermore, we aim to demonstrate the advantages and the disadvantages of

4

Design and Algebraic Implementation of a Functional Programming Language Introduction

algebraic compiler construction for implementing a functional language in interaction
with the other programming techniques used.

1.1 Structure

This work is divided into seven chapters:

1. This introduction describes the motivation and the structure of this thesis.

2. The theoretical foundation chapter lays out the theoretical methods used in this
thesis. The simply typed lambda calculus and its evaluation as well as typing rules
are presented. Based on that the dependently typed lambda calculus, the basis for
Lightfold, is introduced. Furthermore, bidirectional typing, de Bruijn indices for use
instead of named variables, the basics of algebraic modeling, and usage of eliminators
are explained.

3. In the methods chapter the various practical methods used in the implementation are
shown, starting with the programming language Haskell and monadic parsing. More-
over, the implementation of interactive shells and the algebraic modeling techniques
from the theory chapter is explained.

4. The design chapter develops, explains and justifies the design and design choices
of the language Lightfold. The architecture of the language, the core language
LightfoldCore and the surface syntax are presented.

5. The implementation chapter gives an overview of the implementation and how the
theory and the methods from earlier chapters are utilized. The implementation
consists of a parser, an algebraic compiler to the core language, a type checker, an
evaluator and two frontends: an interpreter reading input from a file, and a shell
receiving inputs from the user interactively.

6. In the evaluation the implementation is tested and analyzed. Examples of its usage
will be given and the advantages and disadvantages of the methods used for it are
discussed. An outlook on possible future developments and research paths is given.

7. In the conclusion, the thesis results are summarized.

5

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

2 Theoretical Foundation

In this chapter the underlying theoretical methods of the language will be shown,
explained and motivated. At first we look at the simply typed lambda calculus, λ�,
and its type and evaluation rules. From that we build up to different typing styles
and introduce bidirectional typing. The dependently typed lambda calculus λΠ is
presented, the calculus that will serve as foundation for Lightfold. Furthermore, we
will introduce algebraic modeling and data types and how folds and eliminators can be
used to perform computations on them. Lastly, eliminators and general custom data
types are presented.

2.1 Simply Typed Lambda Calculus

First, we take a look at the simply typed lambda calculus, or λ� in short. It is the common
basis for other typed lambda calculi, including the one we use for for Lightfold.

Definition 2.1.1: λ� Syntax

λ� consists of two separate constructs: types and terms, represented by 𝜏 and 𝑒 re-
spectively and defined in Backus-Naur form. 𝛼 is a predetermined set of base types, 𝑥
denotes a variable identifier.

𝜏 ::= 𝛼
∣ 𝜏 → 𝜏 ′

𝑒 ::= 𝑥
∣ 𝑒 𝑒′

∣ 𝜆𝑥.𝑒

[1, Sec. 2.1]

6

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

As can be seen from definition 2.1.1, a λ� term can be one of three constructs:

• A lambda abstraction 𝜆𝑥.𝑒, consisting of a variable identifier 𝑥 and the inner term 𝑒.
This represents a function that receives an argument that is bound to the variable 𝑥,
which can then be used in the inner term 𝑒 to access the argument.

• A application 𝑒 𝑒′ of an argument term 𝑒′ to another term 𝑒 serving as function.
• A variable denoted by an identifier 𝑥. A variable is called bound if it refers to a lambda
binder. If there is no such binder fitting the variable, it is called a free variable. For
example, in the term 𝜆𝑥.𝑥 𝑦 the variable 𝑥 is bound and 𝑦 is free.

Types, on the other hand, can be one of two constructs:

• A base type, taken from a predetermined set of base types 𝛼.
• A function type 𝜏 → 𝜏 ′, which is comprised of a type 𝜏 for the function argument,
called domain of the function, and a type 𝜏 ′ for the function result, called range.

We use the notation 𝑒 ∶ 𝜏 to indicate that a term 𝑒 has the type 𝜏.

Example 2.1.2: λ� Terms

These are some examples of lambda terms and correct types for them.

• 𝜆𝑥.𝑥 ∶ 𝜏 → 𝜏 (identity function)
• 𝜆𝑥.𝜆𝑦.𝑥 ∶ 𝜏 → 𝜏 ′ → 𝜏 (constant function that always returns the first argument)
• 𝜆𝑓 .𝜆𝑥.𝑓 𝑥 ∶ (𝜏 → 𝜏 ′) → 𝜏 → 𝜏 ′ (apply function)

Evaluation

The semantics of λ� terms stem from their ability to represent computations by being
evaluated. 𝑒 ⇓ 𝑣 denotes that the result of fully evaluating a term 𝑒 is 𝑣. For example, the
identity function 𝜆𝑥.𝑥 returns the argument itself for every input 𝑥. When a value is
applied to this function, the result is the value itself: (𝜆𝑥.𝑥) 𝑎 ⇓ 𝑎.

This intuitive approach to evaluation can be formalized using evaluation rules as shown
in definition 2.1.3. A rule consists of premises, written above a vertical line, and a
conclusion, written below that line.

7

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

Definition 2.1.3: λ� Evaluation Rules

𝑒 ⇓ 𝜆𝑥.𝑣 𝑣[𝑥 ↦ 𝑒′] ⇓ 𝑣 ′
(E-App)

𝑒 𝑒′ ⇓ 𝑣 ′
𝑒 ⇓ 𝑣 𝑒′ ⇓ 𝑣 ′

(E-AppTrans)
𝑒 𝑒′ ⇓ 𝑣 𝑣 ′

𝑒 ⇓ 𝑣
(E-Lam)

𝜆𝑥.𝑒 ⇓ 𝜆𝑥.𝑣
(E-Var)

𝑥 ⇓ 𝑥

[1, Fig. 1]

(E-App) performs β-reduction, the process of applying an argument to a lambda func-
tion. For that, inside the lambdas inner term all occurrences of the variable bound by
the lambda are replaced with the argument.

The substitution of all 𝑥with 𝑦 in a term 𝑒 is denoted by 𝑒[𝑥 ↦ 𝑦]. The rule states that
if a term 𝑒 evaluates to a lambda term 𝜆𝑥.𝑣, and the result of replacing all occurrences
of the variable 𝑥 in 𝑣with 𝑒′ is 𝑣 ′, it can be concluded that the application 𝑒 𝑒′ evaluates
to 𝑣 ′.

(E-AppTrans) evaluates both sides of an application without performung β-reduction
if the function side of an application does not evaluate to a lambda term.

(E-Lam) evaluates lambda terms by recursively evaluating their inner term.

(E-Var) states that variables not yet substituted through a β-reduction evaluate to
themselves.

By repeated application of the evaluation rules we can derive the evaluation result for
a given λ� term. An exemplary evaluation is detailed in example 2.1.4.

Example 2.1.4: λ� Evaluation

We show that (𝜆𝑥.𝜆𝑦.𝑥) 𝑎 𝑏 evaluates to 𝑎 using the evaluation rules for λ�.
(E-Var)

𝑥 ⇓ 𝑥
(E-Lam)

𝜆𝑦.𝑥 ⇓ 𝜆𝑦.𝑥
(E-Lam)

𝜆𝑥.𝜆𝑦.𝑥 ⇓ 𝜆𝑥.(𝜆𝑦.𝑥) 𝜆𝑦.𝑥[𝑥 ↦ 𝑎] ⇓ 𝜆𝑦.𝑎
(E-App)

(𝜆𝑥.𝜆𝑦.𝑥) 𝑎 ⇓ 𝜆𝑦.𝑎 𝑎[𝑦 ↦ 𝑏] ⇓ 𝑎
(E-App)

(𝜆𝑥.𝜆𝑦.𝑥) 𝑎 𝑏 ⇓ 𝑎

8

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

Typing

λ� terms can not only be evaluated, they can also be type checked against λ� types. For
typing we introduce the concept of typing contexts. A typing context Γ is an unordered
list of tuples of a variable 𝑥 and their type 𝜏, each denoted in the format 𝑥 ∶ 𝜏. A variable
may only occur once in a context. We write Γ ⊢ 𝑥 ∶ 𝜏 to denote that 𝑥 is of the type 𝜏
in the context Γ. The typing rules are given in definition 2.1.5.

Definition 2.1.5: λ� Typing Rules

(T-Var)
Γ, 𝑥 ∶ 𝜏 ⊢ 𝑥 ∶ 𝜏

Γ ⊢ 𝑒 ∶ 𝜏 → 𝜏 ′ Γ ⊢ 𝑒′ ∶ 𝜏 (T-App)
Γ ⊢ 𝑒 𝑒′ ∶ 𝜏 ′

Γ, 𝑥 ∶ 𝜏 ⊢ 𝑒 ∶ 𝜏 ′
(T-Lam)

Γ ⊢ 𝜆𝑥.𝑒 ∶ 𝜏 → 𝜏 ′

(T-Var) states that from any context and 𝑥 ∶ 𝜏, 𝑥 ∶ 𝜏 itself can be inferred.
(T-App) is the application rule. If a term 𝑒 is a function of type 𝜏 → 𝜏 ′ and 𝑒′ of type 𝜏,

then the application 𝑒 𝑒′ has the type 𝜏 ′.
(T-Lam) lets us derive the type of lambda expressions: If assuming that 𝑥 ∶ 𝜏 yields

𝑒 ∶ 𝜏 ′, the lambda term 𝜆𝑥.𝑒 is a function of the type 𝜏 → 𝜏 ′.

Through repeated application of these rules it can be proven that a term has a specific
type.

Example 2.1.6: λ� Type Derivation

We prove that the term (𝜆𝑥.𝜆𝑦.𝑥) 𝑎 𝑏 is of type 𝜏 in the initial context Γ = 𝑎 ∶ 𝜏 , 𝑏 ∶ 𝜏 ′.
(T-Var)

Γ, 𝑥 ∶ 𝜏 , 𝑦 ∶ 𝜏 ′ ⊢ 𝑥 ∶ 𝜏
(T-Lam)

Γ, 𝑥 ∶ 𝜏 ⊢ 𝜆𝑦.𝑥 ∶ 𝜏 ′ → 𝜏
(T-Lam)

Γ ⊢ 𝜆𝑥.𝜆𝑦.𝑥 ∶ 𝜏 → 𝜏 ′ → 𝜏
(T-Var)

Γ ⊢ 𝑎 ∶ 𝜏
(T-App)

Γ ⊢ (𝜆𝑥.𝜆𝑦.𝑥) 𝑎 ∶ 𝜏 ′ → 𝜏
(T-Var)

Γ ⊢ 𝑏 ∶ 𝜏 ′
(T-App)

Γ ⊢ (𝜆𝑥.𝜆𝑦.𝑥) 𝑎 𝑏 ∶ 𝜏

As we can see from the evaluation and typing rules, λ� allows terms to depend on
terms via application and lambda abstraction. On the other hand, it neither allows
terms or types to depend on types nor types to depend on terms. This makes it the

9

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

basic typed system in the λ-cube introduced by Barendregt in [2], meaning that all
other lambda calculi classified in the λ-cube are built upon λ�.

It should be noted that not all syntactically valid terms have a valid type in λ�. For
example, the typing rules fail for the term 𝜆𝑥.𝑥 𝑥 as illustrated in figure 2.1. We cannot
assign a type to 𝑥. As it is being used as a function, it needs to be a function type, but
it also is the argument to that function. We would need to harmonize the constraints
𝑥 ∶ 𝜏 and 𝑥 ∶ 𝜏 → 𝜏 ′ at the same time. While not done in this work, that restriction
can be avoided by allowing multiple types to be assigned to a single type. This concept
is called intersection types and was among others examined by Barendregt, Coppo and
Dezani-Ciancaglini in [3].

𝑥 ∶ 𝜏 ⊢ 𝑥 ∶ 𝜏 → 𝜏 ′
(T-Var)

𝑥 ∶ 𝜏 ⊢ 𝑥 ∶ 𝜏 (T-App)
𝑥 ∶ 𝜏 ⊢ 𝑥 𝑥 ∶ ? (T-Lam)
⊢ 𝜆𝑥.𝑥 𝑥 ∶ ?

Figure 2.1: Trying to derive a type for 𝜆𝑥.𝑥 𝑥

Typing Styles

So far λ� has been used with types as an external feature. λ� terms do not contain
types in themselves, we only check terms against externally provided types. This typing
style is known as Curry-style typing [4].

While we can check terms against a given type, inferring the types of a given term
is more complex in Curry-style λ�. We can try constructing a simple type inference
algorithm from the typing rules. While that would work for variables and applications,
when trying to write the case for lambdas, we run into problems as illustrated in listing
2.1.7 using pseudocode: It is unclear what we should have written in the places marked
with question marks.

This problem can be demonstrated with the identity function 𝜆𝑥.𝑥. It can be successfully
type checked against multiple type terms, for example 𝑎 → 𝑎, 𝑏 → 𝑏 or (𝑎 → 𝑏) → (𝑎 →
𝑏). Because of variable renaming these types are equivalent, and we could output only
the most general type, but this would require a more involved algorithm.

10

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

Listing 2.1.7: Type Inference in Curry-Style λ�

inferType ctx (Variable x) = lookup ctx x

inferType ctx (Application e e')

= case (inferType ctx e, inferType ctx e') of

(τ -> τ', τ) -> τ'

_ -> error

inferType ctx (Lambda x e)

= let τ' = inferType (ctx + (x, ?)) e

in ? -> τ'

Adapted from [5, Sec. 1.1]

Another problem is the case for applications. For example, the algorithm will fail if
the type of the function is inferred to be 𝑎 → 𝑎, but the type of the argument can be 𝑏.
While the argument type fits the function which can be seen by renaming variables,
simple syntactical comparison can not capture that.

The counterpart to Curry-style typing is Church-style typing [4]. Instead of understand-
ing types only as external annotations, they are incorporated into the terms, giving
each term an unambiguous type. To accomplish that the grammatical rule for lambda
terms is changed from 𝜆𝑥.𝑒 to 𝜆𝑥 ∶ 𝜏 .𝑒, requiring an explicit type for every lambda
abstraction.

This avoids the type inference problems of Curry-style typing. With Church-style
typing it is impossible to write an ambiguous identity function like 𝜆𝑥.𝑥 because we
have to supply the type of 𝑥 right in the term. Based on this we can write a simple
inferType algorithm, shown in listing 2.1.8: The previous problem that we couldn’t
easily infer the type of the variable bound by a lambda has been avoided through
the supplied annotation, and type equality can be checked through simple syntactical
equality since a term always has an unique type in Church-style λ�.

Listing 2.1.8: Type Inference in Church-Style λ�

inferType ctx (Variable x) = lookup ctx x

inferType ctx (Application e e')

= case (inferType ctx e, inferType ctx e') of

(τ -> τ', τ) -> τ'

_ -> error

11

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

inferType ctx (Lambda x τ e) -- type of input now also supplied

= let τ' = inferType (ctx + (x, τ)) e

in τ -> τ'

Adapted from [5, Sec. 1.1]

Bidirectional Type System

While Church-style typing allows us to easily and automatically infer the types of
our terms, having to explicitly annotate the input of every lambda function is cumber-
some and unnecessarily verbose. We can use another approach: bidirectional typing,
introduced by Pearce and Turner in [6], combining type checking and type inference.

We differentiate between inferable terms, whose type can be inferred automatically,
and checkable terms, for which a type to check against has to be supplied. When type
checking, the algorithm alternates between checking and inference mode depending
on the term being checked, so that type annotations are only necessary in places where
the type cannot be inferred automatically. To that end we add an alternative rule for
terms to the λ� grammar from definition 2.1.1: 𝑒 ∶ 𝜏, allowing us to annotate arbitrary
terms with types.

The type relation ∶ from our previous rules is split into two: 𝑒 ∶� 𝜏, meaning that 𝑒 can
be inferred to have the type 𝜏, and 𝑒 ∶� 𝜏, meaning that 𝑒 can be checked to have the
type 𝜏. We write 𝜏 ∶ ∗ to state that 𝜏 is a base type.

The bidirectional variant of the typing rule set seen in definition 2.1.9 is expanded from
the basic Curry-style one introduced in definition 2.1.5.

Definition 2.1.9: λ� Bidirectional Typing Rules

Γ ⊢ 𝜏 ∶ ∗ Γ ⊢ 𝑒 ∶� 𝜏
(T-Ann)

Γ ⊢ (𝑒 ∶ 𝜏) ∶� 𝜏
Γ ⊢ 𝑒 ∶� 𝜏

(T-Chk)
Γ ⊢ 𝑒 ∶� 𝜏

(T-Var)
Γ, 𝑥 ∶ 𝜏 ⊢ 𝑥 ∶� 𝜏

Γ ⊢ 𝑒 ∶� 𝜏 → 𝜏 ′ Γ ⊢ 𝑒′ ∶� 𝜏
(T-App)

Γ ⊢ 𝑒 𝑒′ ∶� 𝜏 ′
Γ, 𝑥 ∶ 𝜏 ⊢ 𝑒 ∶� 𝜏 ′

(T-Lam)
Γ ⊢ 𝜆𝑥.𝑒 ∶� 𝜏 → 𝜏 ′

[1, Fig. 3]

12

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

The rules (T-Ann) and (T-Chk) have been added. (T-Ann) checks against the newly
allowed type annotations, ensuring that the value actually checks against the annotated
type. (T-Chk) simply states that a term that can be inferred to have a type can also be
checked to have that type. Example 2.1.10 shows that the type of the term from the
previous non-bidirectional example 2.1.6 can be inferred with a single type annotation
added.

Example 2.1.10: λ� Bidirectional Type Derivation

We prove that the term ((𝜆𝑥.𝜆𝑦.𝑥) ∶ 𝜏 → 𝜏 ′ → 𝜏) 𝑎 𝑏 can be inferred to have the type
𝜏 in the initial context Γ = 𝑎 ∶ 𝜏 , 𝑏 ∶ 𝜏 ′ given that 𝜏 and 𝜏 ′ are base types.

Γ ⊢ 𝜏 ∶ ∗

(T-Var)
Γ, 𝑥 ∶ 𝜏 , 𝑦 ∶ 𝜏 ′ ⊢ 𝑥 ∶� 𝜏

(T-Chk)
Γ, 𝑥 ∶ 𝜏 , 𝑦 ∶ 𝜏 ′ ⊢ 𝑥 ∶� 𝜏

(T-Lam)
Γ, 𝑥 ∶ 𝜏 ⊢ 𝜆𝑦.𝑥 ∶� 𝜏 ′ → 𝜏

(T-Lam)
Γ ⊢ 𝜆𝑥.𝜆𝑦.𝑥 ∶� 𝜏 → 𝜏 ′ → 𝜏

(T-Ann)
Γ ⊢ (𝜆𝑥.𝜆𝑦.𝑥) ∶ 𝜏 → 𝜏 ′ → 𝜏 ∶� 𝜏 → 𝜏 ′ → 𝜏

(T-Var)
Γ ⊢ 𝑎 ∶� 𝜏

(T-Chk)
Γ ⊢ 𝑎 ∶� 𝜏

(T-App)
Γ ⊢ ((𝜆𝑥.𝜆𝑦.𝑥) ∶ 𝜏 → 𝜏 ′ → 𝜏) 𝑎 ∶� 𝜏 ′ → 𝜏

(T-Var)
Γ ⊢ 𝑏 ∶� 𝜏 ′

(T-Chk)
Γ ⊢ 𝑏 ∶� 𝜏 ′

(T-App)
Γ ⊢ ((𝜆𝑥.𝜆𝑦.𝑥) ∶ 𝜏 → 𝜏 ′ → 𝜏) 𝑎 𝑏 ∶� 𝜏

2.2 Dependently Typed Lambda Calculus

Dependent typing is the concept of allowing types to depend on terms. It allows us to
encode more restrictions on values into the type system. An example of a commonly
used function whose type can only be correctly expressed using dependent types is
printf.

printf, or some variant, is a string formatting function in many programming lan-
guages1. It takes a string containing a number of formatting specifiers and a number
of other arguments, one for each formatting specifier, its type depending on said
specifier.

An example call to C’s printf2 is:

1For example in C (https://linux.die.net/man/3/printf), Haskell (https://hackage.haskell.org/package/ba
se-4.14.0.0/docs/Text-Printf.html#v:printf) or Python (https://docs.python.org/3/library/stdtypes.htm
l#str.format).

2https://linux.die.net/man/3/printf

13

https://linux.die.net/man/3/printf
https://hackage.haskell.org/package/base-4.14.0.0/docs/Text-Printf.html#v:printf
https://hackage.haskell.org/package/base-4.14.0.0/docs/Text-Printf.html#v:printf
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#str.format
https://linux.die.net/man/3/printf

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

printf("Name: %s, Age: %d", "Otto", 42)

This would yield "Name: Otto, Age: 42". The formatting string contains two specifiers,
one for inserting a string (%s) and one for a decimal number (%d), and the two fitting
arguments are provided after the formatting string. However, encoding the type of
such a function in a strict type system is problematic.

Haskell being a statically typed language, its implementation of printf3 uses a typeclass
to allow different types and numbers of arguments. This allows the type checker to
check that only arguments of valid types are given. However, it cannot check that the
amount and types of the arguments actually fit the formatting string, since Haskell’s
type system is not dependent and has no means of examining the actual value of the
formatting string. For example, printf "%s" "foo" "bar" and printf "%s" 13 both
compile and do not fail until runtime.

Dependent typing aims to alleviate this shortcoming: It allows binding the value of
a function argument not only in the function result, but also in its type and use it
to compute the rest of the type depending on the input value. In our example that
means we can analyze the formatting specifiers and compute the type of the required
arguments during type checking, enabling us to cleanly and safely specify printf’s
type.

The type of such a type-safe printf function might look like this, formulated in Haskell-
like pseudocode:

printf :: (input :: String) -> printfType (getSpecifiers input)

Here, getSpecifiers :: String -> [String] is a function for retrieving the formatting
specifiers and printfType :: [String] -> * is a function for constructing printf’s
return type. A recursive implementation of printfType could look like this:

printfType :: [String] -> *

printfType [] = String

printfType ("%s":specs) = String -> (printfType specs)

printfType ("%d":specs) = Int -> (printfType specs)

[…]

This means that printf expects one argument for each formatting specifier: a string for
each "%s" and an integer for each "%d". The return value of printf is always a string,
which is why printfType returns just the type String for an empty list of specifiers.

3https://hackage.haskell.org/package/base-4.14.0.0/docs/Text-Printf.html#v:printf

14

https://hackage.haskell.org/package/base-4.14.0.0/docs/Text-Printf.html#v:printf

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

As an example, printf called with the formatting string "Name: %s, Age: %d" would
therefore have a final evaluated type:

printf :: String -> String -> Int -> String

This is the expected result. printf takes a string argument for the formatting string,
a string argument for the first formatting specifier "%s", an integer argument for the
second specifier "%d", and returns a string as result.

We can see that for dependent types to be useful, we not only need to be able to bind
values in types, but also need the ability to perform computations with types and return
them as result of computations lest we would not be able to actually use the bound
values.

Dependently typed programming languages do already exist and can be used: One
of the earliest examples is Cayenne, introduced in 1998 by Augustsson in [7]. More
modern, still maintained and practically usable specimen are Idris 4 or Agda 5.

Syntax

This concept of dependent types is formulated into an extended lambda calculus, build-
ing on λ� from section 2.1. What we need to add is: annotations for bidirectional
typing as already explained in section 2.1, a way to bind values in types and a way to
compute types.

To this end the dependently typed lambda calculus, or λΠ in short, is defined in definition
2.2.1. The definition is explained in the following.

4https://www.idris-lang.org
5https://wiki.portal.chalmers.se/agda/pmwiki.php

15

https://www.idris-lang.org
https://wiki.portal.chalmers.se/agda/pmwiki.php

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

Definition 2.2.1: λΠ Syntax

λΠ is defined using Backus-Naur form. 𝑥 denotes a variable identifier.

𝑒, 𝜌, 𝜅 ::= 𝑒 ∶ 𝜌
∣ ∗
∣ Π𝑥 ∶ 𝜌.𝜌′

∣ 𝑥
∣ 𝑒 𝑒′

∣ 𝜆𝑥.𝑒

[1, Sec. 3.1]

There is only a single syntax rule in λΠ. We use different nonterminals to differentiate
where a term is meant as an expressions (𝑒), a type (𝜌) or as a kind (𝜅, kinds are types
of types), but they are all identical: in λΠ everything is a term. Thanks to this change,
variables, functions and applications can now return type terms in just the same way
they return normal terms.

As types are terms now, their type has to be expressible as well. For that purpose ∗ is
introduced as kind of types.

The second main difference is that instead of 𝜏 → 𝜏 ′ as function type, λΠ uses the
dependent function space Π𝑥 ∶ 𝜌.𝜌′. As before it contains a domain (𝜌) and a range type
(𝜌′). It distinguishes itself by binding the actual value of the input to a variable (𝑥) and
allowing the range to depend on the value of the input. The name “dependent types”
stems from that. Just like the λ binder allows terms to depend on terms, Π allows types
to depend on terms.

Evaluation & Typing

The evaluation rules for λΠ, found in definition 2.2.2, are extended from those of λ�
from definition 2.1.3. New rules are (E-Ann), that simply ignores type annotations
during evaluation, (E-Star) that evaluates ∗ to itself and (E-Pi) for the dependent
function space.

16

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

Definition 2.2.2: λΠ Evaluation Rules

𝑒 ⇓ 𝑣
(E-Ann)

𝑒 ∶ 𝜌 ⇓ 𝑣
(E-Star)

∗ ⇓ ∗
𝜌 ⇓ 𝜏 𝜌′ ⇓ 𝜏 ′

(E-Pi)
Π𝑥 ∶ 𝜌.𝜌′ ⇓ Π𝑥 ∶ 𝜏 .𝜏 ′

(E-Var)
𝑥 ⇓ 𝑥

𝑒 ⇓ 𝜆𝑥.𝑣 𝑣[𝑥 ↦ 𝑒′] ⇓ 𝑣 ′
(E-App)

𝑒 𝑒′ ⇓ 𝑣 ′
𝑒 ⇓ 𝑛 𝑒′ ⇓ 𝑣 ′

(E-AppTrans)
𝑒 𝑒′ ⇓ 𝑛𝑣 ′

𝑒 ⇓ 𝑣
(E-Lam)

𝜆𝑥.𝑒 ⇓ 𝜆𝑥.𝑣

[1, Fig. 8]

The typing rules in definition 2.2.3 are extended from the bidirectional typing rules for
λ�, given in definition 2.1.9.

Definition 2.2.3: λΠ Typing Rules

Γ ⊢ 𝜌 ∶� ∗ 𝜌 ⇓ 𝜏 Γ ⊢ 𝑒 ∶� 𝜏
(T-Ann)

Γ ⊢ (𝑒 ∶ 𝜌) ∶� 𝜏
(T-Star)

Γ ⊢ ∗ ∶� ∗

Γ ⊢ 𝜌 ∶� ∗ 𝜌 ⇓ 𝜏 Γ, 𝑥 ∶ 𝜏 ⊢ 𝜌′ ∶� ∗
(T-Pi)

Γ ⊢ Π𝑥 ∶ 𝜌.𝜌′ ∶� ∗
Γ ⊢ 𝑒 ∶� 𝜏

(T-Chk)
Γ ⊢ 𝑒 ∶� 𝜏

Γ ⊢ 𝑒 ∶� Π𝑥 ∶ 𝜏 .𝜏 ′ Γ ⊢ 𝑒′ ∶� 𝜏 𝜏 ′[𝑥 ↦ 𝑒′] ⇓ 𝜏″
(T-App)

Γ ⊢ 𝑒 𝑒′ ∶� 𝜏″

(T-Var)
Γ, 𝑥 ∶ 𝜏 ⊢ 𝑥 ∶� 𝜏

Γ, 𝑥 ∶ 𝜏 ⊢ 𝑒 ∶� 𝜏 ′
(T-Lam)

Γ ⊢ 𝜆𝑥.𝑒 ∶ Π𝑥 ∶ 𝜏 .𝜏 ′

[1, Fig. 10]

We explain these rules one by one:

(T-Ann) has been changed to first evaluate the annotated type (using the evaluation
rules from definition 2.2.2) before checking the value against it.

(T-Star) has been added to give ∗ itself as type as a simplification. Note that this
simplification renders the type system unsound as allows encoding of a variant of
Girard’s Paradox [1, Sec. 5] [8].

17

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

(T-Pi) is the main addition: a rule for checking the validity of the types used in a
dependent function type. The range is checked to be a type. The domain is checked
to be a type as well, assuming that the variable bound by the Π-binder being checked
is of the evaluated range type.

(T-Chk) is unchanged, it simply states that if a term can be inferred to have a type, it
can also be checked against it.

(T-App) is where the main dependent typing happens: It has been adjusted to substitute
the variables bound by the Π-binder in the range type of the function with the value
of the argument, allowing us to use said value inside the range.

(T-Var) is unchanged and allows the type of a variable to be inferred from a context
containing said variable.

(T-Lam) now uses the dependent function space as type for lambda terms.

Note that our version of λΠ is not equivalent to the λP calculus from the λ-cube [2]
because of the simplification expressed in typing rule (T-Star) where we give the kind
∗ itself as type.

2.3 De Bruijn Indices

Bound variables in lambda terms are usually denoted using names. For example, the
identity function can be represented as 𝜆𝑥.𝑥 – the lambda binds its argument to the
variable 𝑥 which can then be used inside the lambda term. While this method is
easy, intuitive and makes it possible to use meaningful variable names, it has some
disadvantages as internal representation. For algorithmic processing a variable name
and its meaning is irrelevant, but opens up the possibility of naming conflicts and
makes equality checking harder. For example, 𝜆𝑥.𝑥 and 𝜆𝑦.𝑦 both represent the identity
function – they are semantically identical, but not syntactically.

Figure 2.2: De Bruijn index usage 1

These disadvantages can be avoided using de Bruijn indices [9]. Bound variables are
represented through indices instead of names. This index is the number of in-scope

18

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

Figure 2.3: De Bruijn index usage 2

binders between (that is, we start indexing at zero) the variable and the actual binder
that bound the value we want to refer to. At any given position in the term each binder
in scope is unambiguously referenced by only one index, therefore there are no naming
conflicts and the terms are invariant to variable renaming.

The concept is illustrated in figure 2.2 for the term 𝜆.𝜆.1 0: There are two nested lambda
abstractions. Inside them the de Bruijn index 1 references the outer binder, because
the second lambda is between them. On the other hand, the “0” references the inner
lambda binder as there are zero other binders in between. An equivalent term using
named variables is 𝜆𝑥.𝜆𝑦.𝑥 𝑦.

Figure 2.3 shows that only lambda binders that are actually in scope are counted by
taking the example 𝜆.(𝜆.0) 0. If simply read from left to right, there is a lambda binder
in between the first lambda and the last variable “0”, but since that binder is not in
its scope, the last “0” references the first lambda. The inner “0” simply references the
lambda right in front of it. An equivalent named term is 𝜆𝑥.(𝜆𝑦.𝑦) 𝑥.

Note that in λΠ “binder” does not only refer to lambda abstractions, but also dependent
function types with Π: Inside the range type the Π is a binder for the function input
value that has the type given as domain.

Example 2.3.1: De Bruijn Indices

These are some examples of lambda terms in the usual name-based representation
and de Bruijn index-based representation.

• 𝜆𝑥.𝑥 𝜆.0 (identity function)
• 𝜆𝑥.𝜆𝑦.𝑥 𝜆.𝜆.1 (constant function that returns the first argument)
• 𝜆𝑓 .𝜆𝑥.𝑓 𝑥 𝜆.𝜆.(1 0) (apply function)

A downside to using de Bruijn indices is that variable substitution is more complex than
with named variables. In section 2.1 we used straightforward replacement: To substitute

19

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

the variable 𝑥 with the variable 𝑦 in the term 𝑒, denoted 𝑒[𝑥 ↦ 𝑦], all occurrences of 𝑥
in 𝑒 are directly replaced by 𝑦.

However, for terms with de Bruijn indexed variables we have to consider that a variable
referencing a specific binder will have a different index depending on its position. Take
𝜆.(𝜆.1) 0 for example: both variables reference the same outer lambda binder despite
having different indices.

We also have to pay attention to the term being filled in: Variables inside that term need
to be adjusted so they still reference the same binder. Take 𝜆.((𝜆.𝜆.1) 0) for example.
The correct β-reduction of the marked lambda with the “0” would be 𝜆.(𝜆.1): The 0 had
to be incremented to still reference the outside lambda after being pasted into another
lambda term.

Moreover, variables pointing outside of the term being reduced also have to be adjusted.
For example, 𝜆.((𝜆.1) 0). When β-reducing the marked lambda with the “0”, we do
not have to fill in anything as no variable referenced the marked binder. However,
𝜆.1 would be incorrect as result. Because the marked lambda was removed during
substitution, the variables inside it have to be decremented to still reference the same
outside binders: The correct result is 𝜆.0.

2.4 Algebraic Modeling

In this section the idea of folding lists known from various programming languages is
introduced. It is shown that the concept of folds can be expanded to arbitrary algebraic
data types. Signatures and Σ-algebras are presented as a formal way of specifying such
data types in an abstract fashion for usage in generalized fold functions and more.

Lists

The type of recursive lists over a type a, written [a], is defined as an inductive data
type using Haskell syntax as follows:

data [a] = [] | a : [a]

A list is either the empty list [] or a value added to another list using :, also called cons
constructor. By nesting these constructors we can model lists of values of arbitrary
lengths.

20

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

Programs on lists can be written using pattern matching and recursion as shown in
example 2.4.1. Generally, two cases are needed: one for the empty list with a constant
and one for the cons constructor, that includes the actual recursive call.

Example 2.4.1: List Functions as Recursions

These are some common list functions expressed by means of recursion:

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

sum :: [Int] -> Int

sum [] = 0

sum (x:xs) = x + sum xs

or :: [Bool] -> Bool

or [] = False

or (x:xs) = x || or xs

While this approach is intuitive, it also is repetitive. The recursion pattern has to be
written each time over, but the functions differ only in what the constant value for
the empty list is and what the computation on the recursive call in the cons case is.
Conveniently, the recursion pattern can be abstracted away using folds.

Folding Lists

Not only from functional programming languages like Haskell6, but also from languages
like Python7 or Java8, we know the fold function on lists, also known as accumulation
or reduction. The idea is to successively apply a function to the list elements until the
list is completely folded. A function foldList that folds a list over the type a from right
to left into a result of the type b can be written as follows:

6https://hackage.haskell.org/package/base-4.14.0.0/docs/Prelude.html#v:foldr
7https://docs.python.org/3/library/functools.html#functools.reduce
8https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Stream.html#reduce(ja
va.util.function.BinaryOperator)

21

https://hackage.haskell.org/package/base-4.14.0.0/docs/Prelude.html#v:foldr
https://docs.python.org/3/library/functools.html#functools.reduce
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Stream.html#reduce(java.util.function.BinaryOperator)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Stream.html#reduce(java.util.function.BinaryOperator)

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

foldList :: (a -> b -> b) -> b -> [a] -> b

foldList f x [] = x

foldList f x (y:ys) = f y (foldList f x ys)

foldList allow us to express list functions very concisely without having to write the
actual recursion pattern ourselves. What would be expressed as a reduction case in the
list recursion is given as first argument to foldList, and the empty case is supplied as
second argument. foldList then performs the actual recursion, as shown for multiple
functions in example 2.4.2, which also illustrates the conciseness of using foldList in
comparison to the direct recursion used in example 2.4.1.

Example 2.4.2: List Functions as Foldings

These are some common list functions expressed by means of foldList:

length :: [a] -> Int

length = foldList (const (+1)) 0

sum :: [Int] -> Int

sum = foldList (+) 0

or :: [Bool] -> Bool

or = foldList (||) False

A particular instance of a list can be visualized as a tree structure where the tree’s
nodes represent a constructor each, its children being the constructor’s arguments. The
calling tree built by a fold or a recursive function can be represented in the same way:
A node represents a function call with the node’s children as arguments.

Figure 2.4 shows this for the example list [1,2,3] (or written using the constructors
1:2:3:[]) and the summation function sum. We can see that the structure is identical in
both trees: Recursion and foldings essentially work by replacing all constructors in the
term being reduced by values or functions fitting in the constructor’s place.

[] has no arguments, so for sum the simple value 0 fits in its place. : has two arguments:
one for the next element of the list, here a number, and one for the rest of the list. When
reducing, that is the sum of the rest of the list, which is a number as well. (+) takes
two numbers as arguments, which lets it fit in the place of (:).

22

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

:

1 :

2 :

3 []

+

1 +

2 +

3 0

Figure 2.4: A list and its folding

Generalizing Folding

The concept of folding works for other algebraic data types built with constructors as
well. The constructors are replaced with fitting functions. Example 2.4.3 demonstrates
that for natural numbers and binary trees with data in the leafs.

Example 2.4.3: Other Foldable Data Types

Note that this code is case-sensitive: We use the lowercased variants of the constructor
names as variable names for the respective fold arguments.

data Nat = Zero | Succ Nat

foldNat :: a -> (a -> a) -> Nat -> a

foldNat zero succ Zero = zero

foldNat zero succ (Succ n) = succ (foldNat zero succ n)

isEven :: Nat -> Bool

isEven = foldNat True not

data Tree a = Leaf a | Fork (Tree a) (Tree a)

foldTree :: (a -> b) -> (b -> b -> b) -> BinaryTree a -> b

foldTree leaf fork (Leaf x) = leaf x

foldTree leaf fork (Fork left right)

= fork (foldTree leaf fork left) (foldTree leaf fork right)

sumTree :: BinaryTree Int -> Int

23

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

sumTree = foldTree id (+)

The process is illustrated for isEven (Succ (Succ (Succ Zero))) False (that is,
checking whether three is even) in figure 2.5 and for sumTree (Fork (Leaf 17) (Fork

(Fork (Leaf 1) (Leaf 5)) (Leaf 9))) 32 in figure 2.6. It can be seen that folds on
natural numbers and trees essentially work by replacing the constructors with the
given functions just like for lists.

Succ

Succ

Succ

Zero

not

not

not

True

Figure 2.5: A natural number and its fold

Fork

Leaf

17

Fork

Fork

Leaf

1

Leaf

5

Leaf

9

+

id

17

+

+

id

1

id

5

id

9

Figure 2.6: A tree and its fold

The programming language Haskell has a feature like this: for simple data types with
exactly one type variable the GlasgowHaskell Compiler features the language extension
DeriveFoldable9 that allows automatic generation of fold functions without additional
implementation.

9https://downloads.haskell.org/~ghc/8.8.3/docs/html/users_guide/glasgow_exts.html#deriving-foldabl
e-instances

24

https://downloads.haskell.org/~ghc/8.8.3/docs/html/users_guide/glasgow_exts.html#deriving-foldable-instances
https://downloads.haskell.org/~ghc/8.8.3/docs/html/users_guide/glasgow_exts.html#deriving-foldable-instances

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

Abstract Data Types

Up to now, we talked about data types, folds and their generalization in a mostly
informal way. In this subsection we will formalize these concepts using signatures.

The types like the lists we presented are concrete data types. They not only define the
structure of lists, but also simultaneously define the concrete set of lists and functions
to build elements of it: for lists that are the constructor functions [] and :.

Abstract algebraic data types, on the other hand, define the structure of data type while
leaving the choice of interpretation open. Such abstract types are defined via signatures
in definition 2.4.4. Signatures can be constructive or destructive [10, Sec. 2.3], but we
only cover constructive ones.

Definition 2.4.4: Signatures

A constructive signature Σ = (𝑆, 𝐹) consists of:

• a set 𝑆 = {𝑠1, …, 𝑠𝑛} of symbols called sorts; and

• a set of named function types 𝐹 = {𝑓1 ∶ 𝑒1 → 𝑒′1, …, 𝑓𝑚 ∶ 𝑒𝑚 → 𝑒′𝑚} called operations.

The 𝑒𝑖, called domain of the respective operation, are of the form 𝑑𝑖,1 × … × 𝑑𝑖,𝑘𝑖 , with
each 𝑑𝑖 being either a set or a sort. 𝑘𝑖 is called the arity of the operation 𝑓𝑖 and must
be zero or larger.

The 𝑒′𝑖 are always sorts and are called range of the corresponding operation.

𝑥 × 𝑦 denotes the cartesian product of 𝑥 and 𝑦.

Adapted from [10, Sec. 2.3].

Each sort of a signature corresponds to a single concrete data type: A signature can
model multiple interdependent concrete data types. The operations on the other hand
correspond to a constructor for the sort in the respective operation’s range. Some
examples of signatures are shown in example 2.4.5.

25

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

Example 2.4.5: Signatures

• Nat models the natural numbers.

Nat = (𝑆 = {nat}, 𝐹 = {zero ∶ nat,
succ ∶ nat → nat})

• List(𝑋) models lists over the set X.

𝐿𝑖𝑠𝑡(𝑋) = (𝑆 = {𝑙𝑖𝑠𝑡}, 𝐹 = {empty ∶ list,
cons ∶ 𝑋 × list → list})

• Tree(𝑋)models trees with an arbitrary amount of children per node and node marks
from 𝑋 (note that these are different from the previously used leaf marked binary
trees).

𝑇 𝑟𝑒𝑒 = (𝑆 = {tree, trees}, 𝐹 = {join ∶ 𝑋 × trees → tree,
nil ∶ trees,
cons ∶ tree × trees → trees})

[10, Sec. 2.4]

A signature Σ = (𝑆, 𝐹) induces a family of Σ-terms defined in definition 2.4.6: these
correspond to “normal” concrete data types. For example, the terms for the 𝑁𝑎𝑡 or
𝐿𝑖𝑠𝑡(𝑋) signatures can be used as expressions representing natural numbers or lists
respectively, and can be visualized using trees just as in figure 2.5 and figure 2.4.

A Σ-algebra for a signature Σ as defined in definition 2.4.7 is the interpretation of the
abstract data type defined by Σ into concrete values. For each sort in the signature, there
is a carrier set in the Σ-algebra, which can be regarded as the result type of interpreting
operations with the corresponding sort as range.

Definition 2.4.6: Σ-Terms

Let Σ = (𝑆, 𝐹) be a constructive signature. The family of Σ-terms 𝑇Σ = (𝑇Σ,𝑠)𝑠∈𝑆 is
inductively defined for each sort 𝑠 ∈ 𝑆 as the smallest set constructed by the following
rules:

26

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

• 𝑓 ∶ 𝑠 ∈ 𝐹 ⟹ 𝑓 ∈ 𝑇Σ,𝑠
• 𝑓 ∶ 𝑑1 × … × 𝑑𝑛 → 𝑠 ∈ 𝐹 and 𝑡𝑖 is compatible to 𝑑𝑖 ⟹ 𝑓(𝑡1, …𝑡𝑛) ∈ 𝑇Σ,𝑠
We call a term 𝑡 compatible to a sort 𝑠 if 𝑡 ∈ 𝑇Σ,𝑠 and compatible to a set 𝑆 if 𝑡 ∈ 𝑆.

𝑇Σ is therefore the set of all terms that can be constructed from Σ.

Definition 2.4.7: Σ-Algebras

Let Σ = (𝑆, 𝐹) be a constructive signature.

A Σ-algebra 𝒜 = (𝐴, 𝑂𝑝) consists of:

• a family of carrier sets 𝐴 = (𝐴𝑠)𝑠∈𝑆 (one for each sort in 𝑆);
• a set of functions (also called operations) 𝑂𝑝 = {𝑓𝒜1 ∶ 𝐴𝑒1 → 𝐴𝑒′1 , …, 𝑓𝒜𝑚 ∶ 𝐴𝑒𝑚 →
𝐴𝑒′𝑚} (one for each operation in Σ), where for any 𝑒, 𝐴𝑒 is 𝑒 with all sorts replaced by
their respective carrier sets from 𝐴.

Example 2.4.8 shows some algebras.

Example 2.4.8: Σ-Algebras

The 𝑁𝑎𝑡-algebra ℕ with the carrier set ℕ has the operations

zeroℕ ∶ ℕ, succ ∶ ℕ → ℕ

defined as

zeroℕ = 0,
succℕ(𝑛) = 𝑛 + 1.

The List(ℕ)-algebra Sum with the carrier set ℕ has the operations

𝑒𝑚𝑝𝑡𝑦Sum ∶ ℕ, 𝑠𝑢𝑐𝑐Sum ∶ ℕ → ℕ → ℕ

defined as

𝑒𝑚𝑝𝑡𝑦Sum = 0,
𝑐𝑜𝑛𝑠Sum(𝑛, 𝑚) = 𝑛 + 𝑚.

27

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

The 𝐿𝑖𝑠𝑡(𝑋)-algebra 𝐿𝑒𝑛𝑔𝑡ℎ with the carrier set ℕ has the operations

𝑒𝑚𝑝𝑡𝑦Length ∶ ℕ, 𝑠𝑢𝑐𝑐Length ∶ 𝑋 → ℕ → ℕ

defined as

𝑒𝑚𝑝𝑡𝑦Length = 0,

𝑐𝑜𝑛𝑠Length(𝑥, 𝑛) = 𝑛 + 1.

[10, Sec. 2.6]

Looking at the 𝑁𝑎𝑡 or 𝐿𝑖𝑠𝑡(𝑋) signatures, we see that the operation types in signatures
correspond to the argument types of the fold function as we used in this chapter.
Algebras collect a set of these arguments. Σ-terms correspond to constructor expressions.
Using this, we formulate a general definition for the fold functions on Σ-terms of a
signature in definition 2.4.9 that work by replacing the constructors in a term with the
corresponding operations, in this case taken from an algebra.

Definition 2.4.9: Fold Function

Let Σ = (𝑆, 𝐹) be a constructive signature and 𝒜 = (𝐴, 𝑂𝑝) be a Σ-algebra.

The family of fold functions over 𝒜 (𝑓 𝑜𝑙𝑑𝒜,𝑠 ∶ 𝑇Σ,𝑠 → 𝐴𝑠)(𝑠∈𝑆) (that is, there is one
fold function per sort) is defined for each sort 𝑠 ∈ 𝑆 and each signature operation
𝑓 ∶ 𝑑1 × … × 𝑑𝑛 → 𝑠 as follows:

𝑓 𝑜𝑙𝑑𝒜,𝑠(𝑓 (𝑝1, …, 𝑝𝑛)) = 𝐴𝑓(𝑓 𝑜𝑙𝑑𝒜,𝑑1(𝑝1), …, 𝑓 𝑜𝑙𝑑𝒜,𝑑𝑛(𝑝𝑛))

(𝑝𝑖 that are from sets and not from sorts are taken over unchanged into 𝐴𝑓 instead of
being folded.)

These generalized fold functions over algebras behave similarly to the specific ones.
For example, 𝑓 𝑜𝑙𝑑Sum,list is equivalent to the function sum implemented with foldList

in example 2.4.2. An example application of sum can be seen in figure 2.4.

The implementation of signatures, algebras and generalized folds in the functional
programming language Haskell will be explained in section 3.4.

28

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

2.5 Custom Data Types and Eliminators

While λΠ allows us to formulate functions and types, it does not provide a way to specify
new types. It also does not allow recursivity, pattern matching or other techniques
used in programming languages to enable writing actual computations on data. For
that reason, Löh, McBride and Swierstra manually extend their abstract syntax in [1]
with some basic types, so that values and computations are abstractly respresented and
can be handled in the evaluator backend without having to resort to a base calculus
that allows this intrinsically. We follow the same approach, but extend it to work for
arbitrary user-specified algebraic types instead of only a few pre-supplied ones.

With algebraic types as explained in section 2.4 we can model data structures and notate
them using constructors. We use a simple monomorphic variant of algebraic types that
requires no change in the core calculus language by using named free variables for types
and constructors. These are left unchanged during type checking which is exactly what
we want. For type checking, a type 𝑋 is introduced in the type context as 𝑋 ∶ ∗, and for
each constructor 𝐶with the parameter types 𝑝1, …, 𝑝𝑛 we add 𝐶 ∶ 𝑝1 → … → 𝑝𝑛 → 𝑋.

Take the natural numbers for example. Simply adding the bindings 𝑁𝑎𝑡 ∶ ∗, 𝑧𝑒𝑟𝑜 ∶ 𝑁𝑎𝑡
and 𝑠𝑢𝑐𝑐 ∶ Π𝑛 ∶ 𝑁𝑎𝑡.𝑁 𝑎𝑡 to the context before type checking allows us to formulate
natural number terms like 𝑠𝑢𝑐𝑐(𝑠𝑢𝑐𝑐(𝑧𝑒𝑟𝑜)) and type check them.

To provide a means of performing computations on these constructor terms we opt for
an approach based on fold functions as introduced in section 2.4. A folding operation
is added to our core language that folds a term according to operations.

However, for a dependently typed language the fold functions we used until now lack
an important feature: the ability for the output type to depend on the input value.
To remedy that, we expand the concept of folds to allow exactly that. We call these
dependently typed fold functions eliminators.

As an example, we take a look at the natural numbers once again. As a reminder, the
type of a normal fold function for natural numbers Nat looks like this:

foldNat :: a -> (a -> a) -> Nat -> a

We have a type variable a that is the result type, a constant value of that type that is
filled in for Zero, and a function that is filled in for Succ.

The type of a dependently typed eliminator for Nat in Haskell-like pseudocode like in
section 2.2 could be written as follows:

29

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

elimNat :: (motive :: Nat -> *)

-> motive Zero

-> ((n :: Nat) -> motive n -> motive (Succ n))

-> Nat

-> motive input

Instead of a simple type variable, the eliminator needs a function that maps any input
value to the elimination’s output type for that input. We call that function of the type
Nat -> * the motive [1, Ch. 4]. The motive gives the result type of the elimination for
a specific input. Because of that the value for Zero has the type motive Zero: it must be
of the output type for the input Zero.

The function for Succ has changed as well: It now takes two arguments. The value
inside the Succ is passed over both in its original form and in its already eliminated
form. The original form is needed so the motive can be used to compute the types of
the eliminated inner value and the elimination result.

Lastly, the eliminator takes the actual input of the type Nat and returns a value of the
type motive input.

Eliminators extend folds. A folding like foldNat False not for a function that checks
whether a number is even can also be expressed by means of an elimination. As motive
a constant function returning the output type is used and the unchanged versions of
the recursive results in the operations are ignored. For example: elimNat (const Bool)

False (const not).

Generalized Eliminators

Just like folds, eliminators can be generalized for all algebraic data types. The types of
the parts of an eliminator for a data type 𝑋 can be derived as follows:

• The motive has the type 𝑋 → ∗.

• For each constructor 𝐶 with the parameter types 𝑝1, …, 𝑝𝑛 the eliminator has an
operation parameter.

For each 𝑝𝑖 that is not 𝑋, the operation requires an argument of the type 𝑝𝑖. For each
𝑝𝑖 that is 𝑋, the operation takes two arguments, one of the type 𝑋 and one of the
type motive(𝑋).

• The input has the type 𝑋.

30

Design and Algebraic Implementation of a Functional Programming Language Theoretical Foundation

• The output has the type motive(𝑋).

Evaluation of an eliminator is done by checking what constructor the input is and
applying the fitting operation to the recursively evaluated arguments, if applicable. The
evaluation rules used for that are shown in definition 2.5.1.

Definition 2.5.1: Eliminator Evaluation

For each data type 𝑋 we add the following rule:

𝑋 ⇓ 𝑋
𝑥 ⇓ 𝑣

elimX 𝑚 𝑜1 … 𝑜𝑛 𝑥 ⇓ elimX 𝑚 𝑜1 … 𝑜𝑛 𝑣
For each constructor 𝐶𝑖 from 𝑋 with the parameters 𝑝1, …, 𝑝𝑛 we add the following
rules:
𝑥1 ⇓ 𝑦1 … 𝑥𝑛 ⇓ 𝑦𝑛
𝐶𝑖 𝑥1 … 𝑥𝑛 ⇓ 𝐶𝑖 𝑦1 … 𝑦𝑛
𝑥 ⇓ 𝐶𝑖 𝑥1 … 𝑥𝑛 𝑜𝑝𝑖 𝑥1 (elimX 𝑚 𝑜1 … 𝑜𝑛 𝑥1) … 𝑥𝑛 (elimX 𝑚 𝑜1 … 𝑜𝑛 𝑥𝑛) ⇓ 𝑣

elimX 𝑚 𝑜1 … 𝑜𝑛 𝑥 ⇓ 𝑣
(for 𝑥1 that are not of the type 𝑋, the eliminator call is left out.)

Based on [1, Fig. 13]

31

Design and Algebraic Implementation of a Functional Programming Language Methods

3 Methods

In this chapter the various methods used in the implementation of the language will be
presented, explained and motivated, starting with the programming language Haskell
and the libraries Megaparsec for parsing and Haskeline for interactive shells. We will
then show how to implement signatures, algebras and folds from section 2.4 and close
this chapter by explaining how Lightfold realizes custom types and dependently typed
computations on them.

3.1 Haskell

Haskell1 is our programming language of choice for the implementation of Lightfold.
Haskell is purely functional, which lends itself for implementing the algebraic folding
approach to compiler construction as will be shown in section 3.4. It also allowsmonadic
parsing that will be presented in section 3.2.

We will use Haskell together with the build tool Stack2 for convenient dependency
management and deterministic builds. Instead of the default Haskell prelude we use
the module ClassyPrelude3 that removes partial functions and employs more modern
data structures, for example the optimized Text type4 for strings instead of the default
String.

1https://www.haskell.org/
2https://docs.haskellstack.org/en/stable/README/
3https://hackage.haskell.org/package/classy-prelude
4https://hackage.haskell.org/package/text

32

https://www.haskell.org/
https://docs.haskellstack.org/en/stable/README/
https://hackage.haskell.org/package/classy-prelude
https://hackage.haskell.org/package/text

Design and Algebraic Implementation of a Functional Programming Language Methods

3.2 Parsing

Parsing is the process of turning input strings into structured data for further processing.
For parsing we utilize the Haskell library Megaparsec5. Megaparsec is based on the
concept of monadic parsing, where parsers are monads with the parsing output as
monadic result. Monadic operations and parser combinators can then be used to
combine basic parsers into parsers for complex languages.

For example, a basic Megaparsec parser is char :: Char -> Parser Char that parses a
single character and returns it as monadic result in the Parser monad. In the parser
ab :: Parser String from example 3.2.1 we see how simple parsers like char can be
combined into more advanced ones: The alternative combinator

(<|>) :: Parser a -> Parser a -> Parser a

is used to allow both a’s and b’s. The combinator many :: Parser a -> Parser [a]

then uses that to allow an arbitrary amount of a’s and b’s and returns them in a list.

The monadic usage of Megaparsec parsers is also shown in example 3.2.1 with the parser
ab3 :: (String, String, String): We use the do-notation to parse three ab-strings
interspersed with commas and close with the parser eof :: Parser () which expects
the end of the input. The ab-strings are bound to variables and returned as the final
monadic result in a tuple.

Example 3.2.1: Megaparsec Code

ab :: Parser String

ab = many (char 'a' <|> char 'b')

ab3 :: Parser (String, String, String)

ab3 = do

str1 <- ab

_ <- char ','

str2 <- ab

_ <- char ','

str3 <- ab

eof

return (str1, str2, str3)

5https://hackage.haskell.org/package/megaparsec

33

https://hackage.haskell.org/package/megaparsec

Design and Algebraic Implementation of a Functional Programming Language Methods

In example 3.2.2 some strings and their parse result with ab3 can be found.

Example 3.2.2: Megaparsec Usage

Some inputs and their parse result when parsed with ab3:

• "ba,bbb,ba" ("ba","bbb","ba")

• "a,b," ("a","b","")

• ",," ("","","")

• "ab,ab" error: unexpected end of input
• "ab,ac,ab" error: unexpected ‘c’

3.3 Shell

A language shell, also known as read-eval-print loop (REPL) is an interactive shell
interface to the language: the user enters a term and is presented with the type and
evaluated result of that term, or an error message. This allows testing of the language
without having to edit and run a source file multiple times.

The shell for lightfold will be implemented using the Haskeline library6. Haskeline
allows easy implementation of shell-like interfaces providing features like line-editing,
history and more.

When executed, the example code from example 3.3.1 presents the user with the prompt
echo> using getInputLine inside loop. When the user presses enter without having
entered any text, the program is terminated using return (). On the other hand, if
the user has entered some text, the program will output “You entered:” and the input.
Afterwards loop calls itself, thus starting over and prompting the user for input.

Example 3.3.1: Haskeline Usage

A simple echo loop can be implemented using Haskeline as follows:

main :: IO ()

main = runInputT defaultSettings loop where

loop :: InputT IO ()

6https://hackage.haskell.org/package/haskeline

34

https://hackage.haskell.org/package/haskeline

Design and Algebraic Implementation of a Functional Programming Language Methods

loop = do

input <- getInputLine "echo> "

case input of

Nothing -> return ()

Just input -> outputStrLn ("You entered: " ++ input) >> loop

An example usage of this echo shell can look like this:

echo> Hello World!

You entered: Hello World!

echo> Goodbye.

You entered: Goodbye.

echo>

For Lightfold we use Haskeline to develop a shell frontend that allows the user to give
Lightfold terms that are then parsed and returned after evaluation.

3.4 Algebraic Modeling

We introduced the theory behind signatures, algebras and folds in section 2.4. We
implement this formalization of general recursive data types and computations on them
using Haskell.

The signature of an abstract data type is implemented using a polymorphic data type
with a single constructor as shown in definition 3.4.1.

Definition 3.4.1: Signatures in Haskell

Let Σ = (𝑆 = {𝑠1, …, 𝑠𝑚}, 𝐹 = {𝑓1 ∶ 𝑒1 → 𝑒′1, …, 𝑓𝑚 ∶ 𝑒𝑚 → 𝑒′𝑚}) be a signature with each
𝑒𝑖 = 𝑑𝑖,1, …, 𝑑𝑖,𝑘𝑖 . Σ can be implemented in Haskell as follows:

data Sigma s1 … sn = Sigma

{ f1 :: d1_1 -> … -> d1_k1 -> e'1

, …

, fm :: dm_1 -> … -> d1_km -> e'm

}

Instances of this data type Sigma are Σ-algebras.

35

Design and Algebraic Implementation of a Functional Programming Language Methods

For each sort 𝑠𝑖 with 𝑓1, …, 𝑓𝑗 ∈ 𝐹 as all operation types with 𝑠𝑖 as range, the correspond-
ing Σ-terms 𝑇Σ,𝑠𝑖 can be implemented using Haskell types as well:

data Si = F1 d1_1 … d1_k1 | … | Fj dj_1 … dj_kj

The fold functions are implemented for each sort 𝑠𝑖 ∈ 𝑆 and each signature operation
𝑓 ∶ 𝑑1 × … × 𝑑𝑛 → 𝑠𝑖 like this:

foldS :: Sigma s1 … sm -> Si -> si

foldS alg (F p1 … pn)

= (f alg) (foldD1 alg p1) … (foldDN alg pn)

[…]

(𝑝𝑖 that are from sets and not from sorts are filled in unchanged as argument for (f
alg) instead of being folded.)

Adapted from [10, Ch. 9].

The examples 3.4.2 and 3.4.3 show how this method looks in practice by means of the
signatures 𝑁𝑎𝑡 and 𝐿𝑖𝑠𝑡(𝑋) introduced in example 2.4.5.

Example 3.4.2: Signature Nat in Haskell

The signature for natural numbers Nat :

Nat = (𝑆 = {nat}, 𝐹 = {zero ∶ nat,
succ ∶ nat → nat})

can be implemented like this:

data NatAlg nat

= NatAlg {zero :: nat, succ :: nat -> nat}

Its terms and an algebra for those:

data Nat = Zero | Succ Nat

The corresponding fold function:

foldNat :: NatAlg nat -> Nat -> nat

foldNat alg Zero = (zero alg)

foldNat alg (Succ n) = (succ alg) (foldNat alg n)

36

Design and Algebraic Implementation of a Functional Programming Language Methods

An algebra with the carrier Int for translating Nats into native Haskell integers:

algebraInt :: NatAlg

algebraInt = NatAlg {zero = 0, succ = (+1)}

Example 3.4.3: Signature List(X) in Haskell

List(𝑋), the signature for lists over 𝑋:

List(𝑋) = (𝑆 = {𝑙𝑖𝑠𝑡}, 𝐹 = {empty ∶ list,
cons ∶ 𝑋 × list → list})

can be implemented like this:

data ListAlg x list

= ListAlg {empty :: list, cons :: x -> list -> list}

Its terms are the native Haskell lists [x] and an algebra for those:

data [x] = [] | x : [x]

algebraList :: ListAlg x [x]

algebraList = ListAlg {empty = [], cons = (:)}

The corresponding fold function:

foldList :: ListAlg x list -> [x] -> list

foldList alg [] = (empty alg)

foldList alg (x:xs) = (cons alg) x (foldList alg xs)

An algebra with the carrier Int for translating Nats into native Haskell integers:

algebraSum :: ListAlg Int Int

algebraSum = ListAlg {empty = 0, cons = (+)}

algebraLength :: ListAlg x Int

algebraLength = ListAlg {empty = 0, cons = \x xs -> xs + 1}

Apart from using the fold functions, abstract data types can also be used in functions
directly: Any function that would normally output a term of the abstract data type,

37

Design and Algebraic Implementation of a Functional Programming Language Methods

for example lists or natural numbers, can be changed to take an algebra and use its
operations instead of the constructors. This allows to employ the interpretation of an
abstract data type provided by an algebra without ever constructing the actual terms.
For example, a function

dividers :: Int -> [Int]

that computes all dividers of a number can be rewritten to

dividersA :: ListAlg Int list -> Int -> list

dividersA algebraList then returns normal lists like the original function, and dividers
algebraLength calculates the amount of dividers.

We see that abstract data types and fold functions allow us to quickly repurpose func-
tions and data by only exchanging the algebra defining the desired interpretation of
the data type.

38

Design and Algebraic Implementation of a Functional Programming Language Design

4 Design

In this chapter we introduce and explain the design as well as the design decisions of
Lightfold. We start by setting the design goals and explaining the basic architecture
of Lightfold and its internal representations. We continue by presenting the core
language for Lightfold expressions and their surface syntax, and finish by describing
how Lightfold programs are structured and introducing their syntax.

4.1 Design Goals

Lightfold is supposed to be a proof-of-concept to demonstrate dependent typing and
algebraic compilation techniques. Therefore both the implementation and the usage
experience aim to be simple and comprehensible as primary design goal. Another
objective to keep Lightfold easily extensible for future development. Furthermore we
aim for syntax and semantics that allow concise, readable, repetition-free and safe
code.

4.2 Architecture

Lightfold programs are processed in multiple steps.

Parsing is the step of reading Lightfold source code and structuring it into an abstract
syntax tree algebra (LightfoldAST).

Compilation to LightfoldCore is performed using an AST-to-LightfoldCore-algebra.
Type checking is done on LightfoldCore terms.
Evaluation is done on type checked LightfoldCore terms.

The two internal representations, LightfoldAST and LightfoldCore, are defined as
abstract data types using signatures with Σ-terms and fold functions as introduced in

39

Design and Algebraic Implementation of a Functional Programming Language Design

section 2.4. Parsing is done directly into an LightfoldAST-algebra as explained in section
3.4. Using an algebra targeting LightfoldCore, we get a LightfoldCore program.

LightfoldCore as the main internal representation of Lightfold programs is closely based
on the dependently typed lambda calculus λΠ introduced with its rules for evaluation
and typing in section 2.2. We use a core language close to the base calculus to allow for
easier application of the various theoretical methods from chapter 2.

Type checking and evaluation is performed on LightfoldCore terms using recursive
algorithms based on the typing and evaluation rules. That shows another advantage
of using a small core language: It keeps Lightfold extensible. Features can be added
without changes to the core part of the language, as long as they can be translated into
LightfoldCore.

Note that while both LightfoldAST and LightfoldCore are defined through signatures
as abstract data types and used as such, in the following we will only show the concrete
Σ-term types for easier understanding and brevity.

4.3 Terms

The most important part of Lightfold are terms: They are needed to represent values
and types. LightfoldCore’s abstract syntax for terms in listing 4.3.1 is closely based on
the abstract syntax of λΠ shown in section 2.2.

Since our type system for λΠ uses the bidirectional typing from section 2.1, we follow
the same approach as Löh, McBride and Swierstra in [1] and introduce separate types for
representation of checkable (TermCheck) and inferable terms (TermInfer) for improved
type safety: The type inferrer is able to ensure it gets an inferable term as input on the
type level and vice versa.

Listing 4.3.1: LighfoldCore Terms Abstract Syntax

This is the abstract syntax of LightfoldCore terms defined as Haskell data types.

data TermCheck

= Infer TermInfer

| Lambda TermCheck

data TermInfer

40

Design and Algebraic Implementation of a Functional Programming Language Design

= Annotation TermCheck TermCheck

| Star

| Pi TermCheck TermCheck

| Bound Int

| Free Name

| Application TermInfer TermCheck

| Elimination Text TermCheck [TermCheck] TermCheck

data Name = Global Text | Local Int

Applications are represented as pairs of a function and an argument, functions with
multiple arguments are nested. LightfoldCore employs the representation of bound
variables using de Bruijn indices introduced in section 2.3. Bound and free variables
have separate constructors: bound variables have an integer for the de Bruijn index
in the Bound constructor, free variables have either a de Bruijn index with the Name

constructor Local if it is a variable pointing to a binder outside of the current scope or it
can reference a value definition by name with Global. Data types and their constructors
are represented using named free variables as explained in section 2.5.

Because binders are referenced using de Bruijn indices, the Lambda and Pi constructors
do not need an identifier string.

Eliminations from section 2.5 have their own constructor. An elimination has a text with
the name of the type that is being eliminated. The first argument term is the motive,
the list of terms contains the operations, there should be one for each constructor of
the type. The last argument term is the elimination input.

Surface Syntax

Lightfold’s surface syntax for terms is based on the following principles:

• Anything between /* and */ or following a // in the same line is regarded as comment
and ignored. This comment syntax is the same as in many languages, including C,
C++ and Java.

• As identifiers any strings consisting of numbers and lower-case or upper-case latin
letters are allowed as long as the first character is a letter and no number.

41

Design and Algebraic Implementation of a Functional Programming Language Design

• Named variables are used instead of de Bruijn indices. While de Bruijn indices are
handy for internal representation, named variables are better suited for the surface
syntax as they allow for meaningful names to be used and do not have to be changed
when adding or removing binders.

• Type annotations are written using a single colon, for example x : Nat, which is
concise and what is used in mathematics. This syntax is, among others, used by Idris.
Haskell, that we previously used as base for pseudocode, uses two colons.

• As common in functional programming languages like Haskell, function application
does not require parentheses to keep it as terse as possible: a blank is enough, for
example: f x. In λΠ and LightfoldCore application is always between exactly one
function and one argument, so a chain of applications like f x y z is actually nested:
((f x) y) z. However, in our syntax, we model application chains as a simple
repetition. The conversion into nested one-on-one applications happens during the
compilation to LightfoldCore.

• Parentheses, as usual, can be used to denote what belongs to what in nested terms.

• Lambda terms are written with a double arrow => between argument and result, for
example: x => f x. This is the same syntax that C#1 and JavaScript2 use for lambda
terms.

Some imperative languages like Java3 use a single arrow for lambdas: x -> f(x).
Haskell4 uses a single arrow together with a backslash symbolizing a λ, for example
\x -> f x, Python5 uses “lambda” and a colon: lambda x: f(x).

However, for Lightfold we decided on the double arrow syntax from C#, because it is
both as concise as Java’s syntax and easy to visually distinguish from function terms
like Python’s syntax and unlike Java’s and Haskell’s syntax.

• Function types are denoted by an identifier, a colon and the range type in parantheses,
followed by a single arrow and the domain type, for instance (n : Nat) -> Nat. This
fits well with the annotation syntax, as n indeed has the type Nat when bound.
The single arrow for function types is commonly used in functional programming

1https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-operator#lamb
da-operator

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
3https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
4https://wiki.haskell.org/Anonymous_function
5https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions

42

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-operator#lambda-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-operator#lambda-operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://wiki.haskell.org/Anonymous_function
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions

Design and Algebraic Implementation of a Functional Programming Language Design

languages like Haskell, and the dependently typed language Idris uses this syntax as
well6.

That both lambdas and function types use arrows also symbolizes their similarities:
Both bind a value to the identifier written before the arrow in the following term.

• Variables are simply denoted by their identifier. The identifier _ is special: It can be
used as identifier in binders but causes an error when used as variable.

Using _ in binders for inputs therefore ensures and shows intuitively that the variable
bound will not be used. This behavior is inspired by Haskell.

• The keyword Type is used to denote the type of types which is processed to Star in
LightfoldCore.

• Lastly, the keyword elim is processed as elimination. It expects an identifier with
the type to be eliminated and some arguments. The first argument is processed as
motive, the last one as elimination input and all in between are processed as the
operations.

These rules lead to the formal syntax specified in definition 4.3.2.

Definition 4.3.2: Lightfold Term Syntax

The syntax for terms is defined using Backus-Naur form. 𝑥 ∗ means that 𝑥 can occur
zero or more times, 𝑥 + means that 𝑥 must occur at least once.

𝑡𝑒𝑟𝑚 ::= termInner : term
∣ termInner +

𝑡𝑒𝑟𝑚𝐼 𝑛𝑛𝑒𝑟 ::= Type

∣ elim identifier termInner ∗

∣ (term)

∣ identifier => term
∣ (identifier : term) -> term
∣ identifier

6https://docs.idris-lang.org/en/latest/reference/syntax-guide.html#dependent-functions

43

https://docs.idris-lang.org/en/latest/reference/syntax-guide.html#dependent-functions

Design and Algebraic Implementation of a Functional Programming Language Design

We use two non-terminals in the grammar, 𝑡𝑒𝑟𝑚 and 𝑡𝑒𝑟𝑚𝐼 𝑛𝑛𝑒𝑟. We do that to allow the
grammar to be parsed in a left-to-right fashion. For example, without the separation
the rule for annotations would look like this: 𝑡𝑒𝑟𝑚 ::= 𝑡𝑒𝑟𝑚 ∶ 𝑡𝑒𝑟𝑚. This is a rule for the
non-terminal term that has term itself as first symbol: it is left-recursive [11]. This is
problematic, as a left-to-right parser would descend into an endless loop when trying to
parse a term, because when parsing a term, it would try to parse a term next, and so on.
By separating terms into normal and inner terms, we can circumvent this problem.

Note that a single termInner can be embedded in a term through term’s second rule:
termInner+ also allows for a single repetition.

4.4 Programs

The general structure of a Lightfold program is inspired by functional programming
languages like Haskell: It consists of an arbitrary amount of definitions, either defining
a value or a type. Definitions can access other definitions, allowing the user to compose
values and types from other values and types. As the base calculus λΠ does not include
recursion though, a definition can only access previous definitions, except for data type
definitions that can access themselves to allow recursive types as explained in section
2.5. The types in LightfoldCore for structuring a program are shown in listing 4.4.1.

Listing 4.4.1: LightfoldCore Abstract Syntax

data Lightfold = Lightfold [DefType] [DefValue]

data DefType

= DefType

Text

[DefConstructor]

data DefConstructor

= DefConstructor

Text

[Maybe Text]

data DefValue = DefValue Text TermCheck TermCheck

44

Design and Algebraic Implementation of a Functional Programming Language Design

As can be seen, a Lightfold program consists of some type definitions and some value
definitions. A type definition has a name and some constructors, and a constructor
consists of a name and and a list of parameters. A parameter is represented by the
type Maybe Text: We use Nothing to denote a recursive parameter, that is, a parameter
that has the type that is currently being defined. Just is used together with an type
identifier to denote a parameter of another type.

On the other hand, a value definition consist of a name, a type term and a value term.
To allow a Lightfold program to be run, a value named main must be defined. When
executed, the program will output the result of evaluating main.

Surface Syntax

Using a value definition a term with a type is bound to an identifier. As syntax we use
the identifier and the type separated by a colon in the first line. Indented in the next
line follows the actual term, for example:

id : (n : Nat) -> Nat

n => n

This syntax deviates from the ones used in Haskell, Idris and others in that the value
is indented (inspired by Python) to designate that it belongs to the declaration above
instead of requiring the user to write the value name again, following the design goal
to avoid unnecessary repetition.

Type definitions look similar to value definitions. They start with the type identifier
followed by : Type, declaring the new type as a type. The constructors with their
parameter types follow, each indented in their own line, for example:

Nat : Type

zero

succ Nat

Note that while identifiers are case-sensitive, Lightfold does not impose any restrictions
on the case of the identifiers used in definitions, binders and variables. However, we
generally use upper-case identifiers for types and lower-case identifiers in all other
occasions.

The resulting formal syntax rules are shown in definition 4.4.2.

45

Design and Algebraic Implementation of a Functional Programming Language Design

Definition 4.4.2: Lightfold Syntax

This is the syntax of Lightfold specified in Backus-Naur form. 𝑥 ∗ means that 𝑥 can
occur zero or more times, indent denotes an indentation (four or more spaces), newline
a line break.

lightfold ::= def ∗

def ::= identifier : Type newline defConstructor ∗

∣ identifier : term newline indent term newline

defConstructor ::= indent identifier identifier ∗ newline

Example 4.4.3 shows a syntactically valid Lightfold program using all introduced syntax
constructs.

Example 4.4.3: Lightfold Syntax

Nat : Type

zero

succ Nat

id : (a : Type) -> (_ : a) -> a

a => x => x

plus : (_ : Nat) -> (_ : Nat) -> Nat

x => y => elim Nat (_ => Nat) x (_ => n => succ n) y

main : Nat

((id Nat) : (_ : Nat) -> Nat) (succ zero)

46

Design and Algebraic Implementation of a Functional Programming Language Implementation

5 Implementation

Lightfold is implemented in the functional programming language Haskell, using the
build tool Stack, as introduced in section 3.1. The implementation exists in a single
source code repository that consists of multiple parts. The common Lightfold library
is the main part and can be found in the src folder. It provides data types, parsers,
compilers, the evaluator and the type checker.

There are two executables. There is the interpreter lightfold-run in the folder run,
that can read files and outputs the evaluated result of the main definition in the file,
and the interactive shell lightfold-shell, found in shell, that provides a command-
line interface to try out Lightfold terms, optionally loading the definitions of a file
beforehand.

The implementation generally aims to be well documented and concise while maintain-
ing readability and comprehensibility.

The source code is attached to this thesis as an archive file. It can also be found online
at https://git.eisfunke.com/software/lightfold/lightfold/-/tree/thesis (or in the always
up to date version at https://git.eisfunke.com/software/lightfold/lightfold).

Note that the listings shown in the following are pseudocode and not direct copies
of the actual implemention. Comments, error handling and other technical details
are omitted from the original code for brevity and legibility when not required for
understanding. The respective file that contains the original and complete code is noted
at the beginning of each section.

5.1 Abstract Syntax Tree

See src/Lightfold/AST.hs

The abstract syntax tree used for parsing is implemented via a signature as explained
in section 3.4. The signature can be seen in listing 5.1.1. For brevity, we only show the
subsignature for Lightfold terms.

47

https://git.eisfunke.com/software/lightfold/lightfold/-/tree/thesis
https://git.eisfunke.com/software/lightfold/lightfold

Design and Algebraic Implementation of a Functional Programming Language Implementation

Listing 5.1.1: Term Abstract Syntax Tree Signature

data AlgebraTerm term termInner = AlgebraTerm {

algebraAnnotation :: termInner -> term -> term,

algebraApplication :: NonEmpty termInner -> term,

algebraSubterm :: term -> termInner,

algebraLambda :: Text -> term -> termInner,

algebraPi :: Text -> term -> term -> termInner,

algebraVariable :: Text -> termInner

}

This signature corresponds to the grammar for terms from definition 4.3.2. There are
two sorts, term and termInner : one for each non-terminal in the grammar. For every
rule, there is an operation with its range corresponding to the non-terminals in the right-
hand rule side. Identifiers are modeled using Text values. NonEmpty in the operation
algebraApplication is the type of non-empty lists and models that an application chain
requires at least one element (a single element simply embeds a termInner into a term

without actual application).

5.2 Parser

See src/Lightfold/Parser.hs

The parser’s task is to read input according to the Lightfold grammar as specified in
definition 4.3.2 and structure it into the algebraic signature for the abstract syntax tree
presented in section 5.1. As explained in section 3.2, the Haskell library Megaparsec is
used to implement the parser monadically.

We explore the parser implementation by taking the example of the parser for terms,
shown in listing 5.2.1, as terms are the most important part of a program.

In our grammar we had two non-terminals for terms: term and termInner, there is a
parsing function for each of those. The functions take an algebra for terms as argument
(that is, an instance of the signature data type from listing 5.1.1). The operations from

48

Design and Algebraic Implementation of a Functional Programming Language Implementation

that algebra are mapped to the parsing results using applicative operators1 according
to the grammar.

For example, a lambda term has to be parsed into the operation algebraLambda ::

Text -> term -> termInner. A lambda expression in Lightfold consists of an identifier,
parsed with the parser identifier, an arrow => parsed with arrowDouble and a term,
parsed with term alg (the algebra alg used for parsing is handed over to the term
parser). The results of these sub-parsers are mapped onto algebraLambda. arrowDouble
is an exception, as its result is always => and does not have to be saved. Its result is
instead ignored using <*.

Multiple alternatives for parsing are concatenated using the alternative operator <|>.
Note that for alternatives their order does matter: The parser for variables, parsing just
an identifier, must come after the parser for lambdas. It would succeed on an identifier
and consume it, even if it belongs to a lambda term. Because of that we have to try
parsing an inner term as lambda expression first and only if that does not work we try
the variable parser.

Alternative parsers that consume input but might still fail after that are wrapped in try,
a parser that backtracks to the previous parser state if the inner parser fails.

Listing 5.2.1: Term Parser

term :: AlgebraTerm term termInner -> Parser term

term alg@AlgebraTerm{..}

= (algebraStar <$ symbol "Type")

<|> try (algebraElimination <$ symbol "elim" <*> identifier

<*> many (termInner alg))

<|> try (algebraAnnotation <$> termInner alg <* colon

<*> term alg)

<|> (algebraApplication <$> NE.some (termInner alg))

termInner :: AlgebraTerm term termInner -> Parser termInner

termInner alg@AlgebraTerm{..}

= try (algebraPi <$ symbol "(" <*> identifier <* colon

<*> term alg <* symbol ")" <* arrow <*> term alg)

<|> (algebraSubterm <$> roundBrackets (term alg))

<|> try (algebraLambda <$> identifier <* arrowDouble

1https://hackage.haskell.org/package/base-4.14.0.0/docs/Control-Applicative.html

49

https://hackage.haskell.org/package/base-4.14.0.0/docs/Control-Applicative.html

Design and Algebraic Implementation of a Functional Programming Language Implementation

<*> term alg)

<|> (algebraVariable <$> identifier)

5.3 Compilation

See src/Lightfold/AST.hs

The compiler is a LightfoldAST-algebra with the LightfoldCore types (see chapter 4) as
carrier sets. It allows us to directly parse Lightfold code into LightfoldCore programs
by using this algebra with the parser functions from the previous section. It can also be
used with LightfoldAST’s fold functions. Again, we examine only the implementation
for terms, shown in listing 5.3.1.

Both term and termInner have [Text] -> Core.TermCheck as carrier set. The list of
string parameters is the list of known bindings. When passing a binder, we add the
name of its variable in front of the list and when reaching a variable, we look up its
name in the list. If the name is in the list, we know the de Bruijn index to be used for
LightfoldCore through the current index in the list.

Applications have to be transformed from LightfoldAST’s representation of application
chains as non-empty lists into the nested one-on-one representation of LightfoldCore
as mentioned in section 4.3. For that, curryApplication (shown in listing 5.3.2) is used.
It always applies the first two arguments of a non-empty list to each other until there
is only one left.

Also noteworthy is the operation for eliminations. It separates the argument list of
the elimination into the motive (the first argument), the input (the last one) and the
operations (all in between).

Listing 5.3.1: AST-Algebra for LightfoldCore

algebraTermCore :: AlgebraTerm

([Text] -> TermCheck)

([Text] -> TermCheck)

algebraTermCore = AlgebraTerm {

algebraStar = \binds -> Infer Star,

algebraElimination = \ty args -> \binds

50

Design and Algebraic Implementation of a Functional Programming Language Implementation

-> getElimination ty (($ binds) <$> args),

algebraAnnotation = \te ty -> \binds

-> Infer $ Annotation (te binds) (ty binds),

algebraApplication = \xs -> \binds

-> curryApplication (($ binds) <$> xs),

algebraSubterm = id,

algebraLambda = \var term -> \binds

-> Lambda $ term (var : binds),

algebraPi = \var domain range -> \binds

-> Infer

$ Pi (domain binds) (range (var : binds)),

algebraVariable = \var -> \binds -> case var of

"_" -> error "_ can't be used as variable"

_ -> case var `elemIndex` binds of

Just i -> Infer $ Bound i

_ -> Infer $ Free $ Global var

}

Listing 5.3.2: curryApplication

curryApplication :: NonEmpty TermCheck -> TermCheck

curryApplication (x :| []) = x

curryApplication (Infer f :| x:xs) = curryApplication

$ Infer (Application f x) :| xs

curryApplication _ = undefined

5.4 Evaluator

See src/Lightfold/Evaluator.hs

After a Lightfold program has been compiled into a LightfoldCore instance, an evaluator
is required to be able to type check the program and then compute its result. The
evaluator mainly implements the evaluation rules for λΠ presented and explained in
section 2.2.

51

Design and Algebraic Implementation of a Functional Programming Language Implementation

To recap: These rules each specify the result of fully evaluating a term of a specific
form to something derived from evaluating parts of the term by themselves. This lends
itself to implementation as a recursive function that evaluates terms by recursively
calling itself on subterms.

λΠ’s rules can be implemented in a syntax-directed way: For every possible construct
of a λΠ term (see definition 2.2.1) there is only one corresponding rule, except for
applications with the rules (E-App) and (E-AppTrans). The former applies an argument
to a lambda function using β-reduction, the latter simply evaluates both sides of the
application.

However, for these rules the decision which one to apply can be made through looking
at the syntax of the evaluated function side: If it is a function term, we perform β-
reduction with (E-App), otherwise we apply (E-AppTrans). The evaluator can therefore
use Haskell’s pattern matching to choose between rules to apply.

The implementation of the evaluator is oriented after [1].

Substitution

The evaluation rules cannot be turned into an algorithm for LightfoldCore evaluation
directly. As LightfoldCore uses de Bruijn indices for variable representation, we need
to pay attention to the problems with substitution described in section 2.3. Variables
referencing a specific binder have different indices depending on their position. Vari-
able indices in terms being filled in have to be incremented when passing further
binders, and when removing a binder, variables inside it pointing outwards have to be
decremented.

Another problem is that in LightfoldCore’s bidirectional type system (see sections 2.1
and 4.3) straightforward substitution of variables with terms is impossible. Variables are
checked in inference mode (they have the type TermInfer) while function arguments
are not generally inferable and therefore have the type TermCheck. This type mismatch
prevents us from simply filling in function arguments.

Both substitution problems are solved by distinguishing bound from free variables and
carrying an environment with us while evaluating terms. An environment contains
the known bindings of variable names to their values. The code excerpts relevant to
substitution can be found in listing 5.4.1.

52

Design and Algebraic Implementation of a Functional Programming Language Implementation

Listing 5.4.1: Evaluator: Substitution

evalCheck env t = case t of

[…]

Lambda term -> Lambda $ substituteFree

(evalCheck (incrementEnv env) (substituteBound term))

evalInfer env@(Env free defTypes) t = case t of

[…]

Pi input output -> Infer $ Pi (evalCheck env input)

(substituteFree $ evalCheck (incrementEnv env)

(substituteBound output))

Bound i -> error "Unknown bound variable reference"

Free s -> case s `lookup` free of

Just term -> evalCheck env term

Nothing -> Infer $ Free s

Application f x -> case evalInfer env f of

Lambda term -> if hasBound 0 result

then error "Unreplaced var in reduction"

else result

where

result = decrement $ evalCheck

((Local 0, evalCheck env $ increment x)

: incrementEnv env)

(substituteBound term)

Infer term -> Infer $ Application term (evalCheck env x)

[…]

The Bound constructor for bound variables is only used when the referenced binder
actually is in the currently used term. When we recursively evaluate a subterm inside
a binder, all bound variables referencing that binder are replaced with locally free
variables of the same index using the substituteBound function. This is possible since
both bound and free variables are inferable terms. We also increment all locally free
variables and references in the environment using incrementEnv.

When applying an argument to a binder we also substitute the bound variables with
free variables. Instead of directly filling in the argument we add it to the environment
as locally free variable with the index zero. When descending into binders, all free
variables in names and terms in the environment are incremented to keep them pointing

53

Design and Algebraic Implementation of a Functional Programming Language Implementation

to the same outside binder. When a free variable is reached during evaluation, its name
is looked up in the environment and filled in if it exists. Unlike direct substitution, this
is possible as the result of an evaluation is always of the type TermCheck, allowing us to
fill in the checkable argument value.

When leaving a binder, we replace locally free variables with the index 0 with bound
variables again, except when removing the binder after application. In that case we
ensure that no free variables with the index zero are left using hasBound and decrement
all free indexed variables inside the binder being removed with decrement.

Bound variables should therefore never be directly encountered by the evaluator. They
should have been replaced by locally free variables when the corresponding binder was
passed.

Elimination

Another interesting part of evaluation are eliminations. The theory behind eliminators
was introduced in section 2.5. Generally, an elimination is evaluated by taking the
input, checking which constructor of the type being eliminated it is, and replacing the
constructor with the fitting operation while recursively applying the elimination to the
constructor’s argument.

To that end we check whether the input is a free variable or an application chain
beginning with a named free variable. Because constructors are represented as named
free variables, we then look up the variable’s name in the constructors of the elimination
type. We use the resulting index to pick the corresponding operation from the operations
list of the elimination.

Using the function getArgs (see listing 5.4.2) the parameter list of the constructor
definition and the concrete arguments of the constructor being processed are traversed.
To recap from section 4: The parameters of a constructor definition are modeled as a
list of the type Maybe Text. Nothing represents a parameter of the constructor’s own
type. Just x is a parameter of the type with the name x.

The parameter list from the constructor definition and the argument list of the con-
structor itself should have the same length because a constructor’s arguments have to
fit its definition. Type checking assures that.

getArgs passes through the two lists one by one, assembling a result list. For each Just

in the parameter list, the argument from the second list is added directly to the result

54

Design and Algebraic Implementation of a Functional Programming Language Implementation

list. For each Nothing (that is, an argument of the type to eliminate), this argument is
added to the result twice, once unmodified and once recursively eliminated.

The argument list resulting from getArgs is then applied to the previously looked up
operation.

This reflects the principles of folding from section 2.4 and elimination from section
2.5. The constructors are recursively replaced by the corresponding operations. The
unchanged arguments are also given to the operation.

Listing 5.4.2: Evaluator: Elimination

getArgs :: [Maybe Text] -> [TermCheck] -> [TermCheck]

getArgs [] [] = []

getArgs ((Just _):params) (arg:args)

= arg : getArgs params args

getArgs (Nothing:params) (arg:args)

= arg

: evalInfer env (Elimination elimType

(evalCheck env motive)

(evalCheck env <$> ops)

arg)

: getArgs params args

5.5 Type Checker

See src/Lightfold/Type.hs

The type checker is the part of Lightfold’s implementation ensuring that all terms have
a correct type that fits their annotations. It is based on the typing rules for λΠ presented
in section 2.2.

In λΠ everything is a term and types can depend on values. Because of that the type
checking process needs to evaluate some terms: The type of a function can only be
computed after the actual argument value of a call of that function is known, as it is
bound inside the type. At that point the domain type has to be evaluated with that
bound value.

55

Design and Algebraic Implementation of a Functional Programming Language Implementation

The type checker is implemented recursively. It consists of two functions, inferType for
inferring types of inferable terms and checkType that checks a checkable term against a
type. The results are wrapped in Either Text to allow for failure with messages and
monadic failure handling.

Type checking uses contexts. In the typing rules, a typing context consisted of bindings
of variable names to their types. In the implementation, the context also includes a
list of bindings of variable names to values. These bindings contain the previous value
definitions, so that they can be used in types. The list of type definitions is also added
to the context because to type check eliminators the type checker has to know the
definition of the corresponding type.

The implementation of the type checker is illustrated with the case for application
shown in listing 5.5.1, because that is the part of the implementation enabling dependent
types: When applying an argument to a function, the argument value is bound in the
range of the function’s type to compute the final return type.

Applications are inferable terms, therefore their type is inferred in the function inferType.
To infer the type for an application Application f x at first the type of the function
f is inferred. It must be a function type of the form Pi range domain, if not, the type
inferring fails.

In the next step, the argument x is checked against the range type. If that succeeds, x is
evaluated to x'. The next step is where dependent types come in: The domain type is
evaluated with the evaluated argument in the evaluation environment (using the same
substiution techniques as in the evaluator). This evaluated domain is returned as type
for the complete application.

The implementation of the type checker is oriented after [1].

Listing 5.5.1: Type Checker – Application

inferType ctx@(Context binds bindVals defTypes) term

= case term of

[…]

Application f x -> case inferType ctx f of

Infer (Pi range domain) -> do

checkType ctx x range

let x' = evalCheck (Env bindVals defTypes) x

let domain' = decrement $ evalCheck

56

Design and Algebraic Implementation of a Functional Programming Language Implementation

(Env ((Local 0, increment x') : bindVals) defTypes)

(substituteBound domain)

if hasBound0 domain'

then error "unreplaced"

else return domain'

_ -> fail "appliction to a non-function"

[…]

5.6 Frontends

See run/Main.hs and shell/Main.hs

The interpreter frontend reads a Lightfold program from a file specified on the command
line. It type checks all definitions in the file and then outputs the result of evaluating
the main definition.

The other frontend is the interactive shell. It optionally accepts a file as argument when
starting, which will then be read, type checked and its definitions provided for use in
the shell session.

The interactive shell is implemented using the Haskeline library presented in section
3.3. The user input is parsed as term and type checked as well as evaluated. If applicable,
the definitions from the optionally loaded file are used. The shell then prints the type
and result of the term.

57

Design and Algebraic Implementation of a Functional Programming Language Evaluation

6 Evaluation

In this chapter we look at examples of the usage of Lightfold via the interpreter and
the interactive shell. We then analyze and evaluate Lightfold with regard to dependent
typing and the techniques used in the implementation. Finally, we discuss the results
and provide an outlook for further development and research.

6.1 Usage

Among other examples, the excerpts of Lightfold code used in this chapter can be found
in the examples folder in the source code repository. The respective file is noted at the
beginning of each section.

Lightfold can be used in two ways. lightfold-run file loads a file, type checks it and
prints the evaluated result of the main definition. It fails if there is no such definition.

lightfold-shell file loads a file, type checks it and opens an interactive shell with
the definitions from the file available for usage. The file can also be omitted for a shell
in a blank environment.

Numbers

See examples/nat.lightfold

As a basic example, we implement the natural numbers and some exemplary functions
on them in Lightfold. As shown in section 2.4, the type of natural numbers consists
of two constructors: one for zero and one for constructing the successor of another
natural number. Listing 6.1.1 models this as the type Nat in Lightfold.

Using eliminators (see section 2.5) we can implement functions on Nat, for instance the
addition function plus. It takes two Nats as input, x and y. The addition is performed

58

Design and Algebraic Implementation of a Functional Programming Language Evaluation

using an elimination of Nat on x. The motive is a function that always returns Nat: an
addition returns a number regardless of the inputs.

The zero operation of the elimination is x: when adding zero to something, it stays
unchanged. The succ operation is a function with two arguments: the first one is the
previous number and the second one is the previous elimination result. We return the
successor of that previous result.

This means that for each succ in y, a succ is added to x, resulting in the addition of x
and y.

Listing 6.1.1: Lightfold Natural Numbers

Nat : Type

zero

succ Nat

plus : (_ : Nat) -> (_ : Nat) -> Nat

x => y => elim Nat (_ => Nat) x (_ => n => succ n) y

The following is an example call of plus in the Lightfold shell:

λ> plus (succ zero) (succ (succ zero))

Type: Nat

Term: (succ) ! ((succ) ! ((succ) ! (zero)))

This is indeed correct: one plus two equals three, which is a Nat.

Dependent Types

See examples/dependent.lightfold

We illustrate the possible usage of dependent types with a simple example in listing
6.1.2.

Listing 6.1.2: Lightfold Dependent Types

Bool : Type

true

59

Design and Algebraic Implementation of a Functional Programming Language Evaluation

false

ifThenElse : (out : Type) -> (_ : Bool) -> (_ : out) -> (_ : out) -> out

out => b => x => y => elim Bool (_ => out) x y b

oneOrTrue : (b : Bool) -> ifThenElse Type b Nat Bool

b => elim Bool (x => ifThenElse Type x Nat Bool) (succ zero) (true) b

First the type Bool that represents a boolean value is defined: it is either true or false.

Using that ifThenElse can be defined. It requires a Type argument named out that is
the type of the choices and the result. The next arguments are b : Bool and two out

values. ifThenElse then returns the first choice if b is true and the second if b is false.
Two example calls in the Lightfold shell are shown in the following:

λ> ifThenElse Nat true (succ zero) zero

Type: Nat

Term: (succ) ! (zero)

λ> ifThenElse Nat false (succ zero) zero

Type: Nat

Term: zero

The dependent example function is oneOrTrue. Its only argument is of type Bool, the
return type is ifThenElse Type b Nat Bool where b is the input value. That means that
oneOrTrue returns a Nat if the input is true and a Bool otherwise.

The function itself is defined by means of an elimination. This time, the motive is
not a constant function, it is the same ifThenElse call as in the type declaration. The
operation for true is succ zero, a Nat, and the one for false is true, a Bool. An example
usage of oneOrTrue looks as follows:

λ> oneOrTrue true

Type: Nat

Term: (succ) ! (zero)

λ> oneOrTrue false

Type: Bool

Term: true

60

Design and Algebraic Implementation of a Functional Programming Language Evaluation

It can be seen that oneOrTrue correctly returns a value of a differing type depending on
the input value.

6.2 Discussion and Outlook

Lightfold allows for the implementation of functions and values using value and type
definitions. Defined values can be used in following definitions to compose programs
gradually. Writing correct programs is assisted by the type checker. The bidirectional
type system requires a relatively small amount of type annotations (see section 2.1). De
Bruijn indices enable usage of simple syntactical equality checking for terms and avoid
problems with variable naming (see section 2.3).

However, de Bruijn indices and the bidirectional type system introduce notable addi-
tional complexity with variable substitution in the implementation of both the evaluator
and the type checker (see section 5.4).

Lightfold’s goals were to develop a simple to use and extensible proof-of-concept
demonstrating dependent typing with concise and understandable code. In chapter 4,
the language architecture and syntax is designed with these goals in mind: The usage
of a λΠ-based small core language should allow for easier future additions (see section
4.2). A simple dependently typed program can be written concisely in a few lines of
Lightfold code (see example 6.1.2).

Having said this, Lightfold is a relatively low-level language. This induces some compro-
mises regarding simplicity. For example, in polymorphic functions each type argument
has to be provided explicitly although they could be inferred [1, Ch. 5]. Data structures
like natural numbers and lists can be represented using algebraic data types, but in-
stances of them have to be tediously encoded with all their constructors (see section
6.1). Programs cannot include functions from other files. Rectifying these and other
flaws could be a promising future development path for Lightfold, allowing for more
convenient usage.

The implementation of Lightfold with abstract data types based on algebraic modeling
as shown in section 3.4 allowed for a concise implementation of the compiler logic in
an algebra as seen in section 5.3. The parser can parse Lightfold code into any algebra,
for example to construct LightfoldCore programs from the source code without ever
having to build up a complete abstract syntax tree.

61

Design and Algebraic Implementation of a Functional Programming Language Evaluation

The abstract algebraic compiler infrastructure should allow for easy extension. For
example, Lightfold can currently only be interpreted or used in a shell. A compiler
backend targeting another language could be added in the future. That should be
possible with few modifications of the existing code by writing a LightfoldCore-Algebra
targeting the target language.

Proper unit tests and correctness proofs for the implementation of LightfoldCore and
its tools could be a worthwile endeavor. Because LightfoldCore is a small core language
close to λΠ proving its compliance with λΠ ’s rules should be feasible with a low amount
of work.

The core language system offers opportunities for improvement as well. The current
type system is unsound because ∗ has ∗ itself as type (see section 2.2). λΠ could be
exchanged for the sound and more powerful calculus of constructions that constitutes
the top of the λ-cube [2].

Lightfold’s algebraic data types are only monomorphic. They could be extended to
allow type and value variables so that data structures like polymorphic lists can be
represented. This would allow for the implementation of vectors: lists with their length
encoded on the type level. They are a common example of the usage of dependent
types, but are currently not representable in Lightfold.

The current system of data types and eliminators is implemented as an external aug-
mentation to the core calculus (see section 2.5). An alternative approach is to encode
data in the calculus itself as pure lambda terms, called lambda encodings. There is
interesting research regarding practical usage of lambda encodings and derivation of
eliminators: for example by Stump in [12], demonstrated with the language Cedille1. A
system like this could be adapted for Lightfold.

It could also be interesting to examine ways of incorporating the advantages of the
abstract algebraic data types shown in section 2.4 into the language. The usage in
Haskell as done in this thesis (see section 3.4) requires a lot of infrastructure code,
like defining the concrete data type for the constructors manually, that could become
unnecessary in a language designed with abstract data types in mind.

1https://cedille.github.io/

62

https://cedille.github.io/

Design and Algebraic Implementation of a Functional Programming Language Conclusion

7 Conclusion

This thesis introduced the simply typed lambda calculus λ� as base of functional
programming. Evaluation and typing of λ� terms was presented, the difference between
Church- and Curry-style typing was shown, and bidirectional typing was introduced
as an attempt of combining their advantages.

We looked at the dependently typed lambda calculus λΠ with its type and evaluation
rules as an extension of λ�. λΠ allows types to depend on terms, for example allowing
the output type of function to depend on the input, which can be useful when trying to
assign a proper type to a function like printf.

De Bruijn indices were presented as a means of representing bound variables in lambda
terms without unambiguous indices instead of arbitrary names. We also introduced the
theoretical foundation of algebraic modeling, including signatures of abstract data types,
Σ-algebras as interpretations of signatures and generalized fold functions. We also
showed the theory behind Lightfold’s approach to custom data types and computations
on them through generalized eliminators.

In the methods chapter, we described the techniques used in the implementation.
Haskell as language of choice, Megaparsec as parsing library and Haskeline as library
for interactive shells were introduced. We showed how to implement the theoretical
methods of algebraic modeling from before.

We looked at Lighfold’s design goal, simplicity and conciseness, and the language
architecture with the λΠ-based core language LightfoldCore. We introduced the internal
representation of the language. The language syntax was explained and justified.

The implementation of Lightfold was introduced, starting with the parsing of terms and
their compilation to LightfoldCore. We explained the implementation of the evaluator,
type checker and the two frontends: the interactive shell and the interpreter.

Finally we evaluated the results using some usage examples, discussed them and pro-
vided an outlook of possible future research work.

63

Design and Algebraic Implementation of a Functional Programming Language Conclusion

References
[1] A. Löh, C. McBride, and W. Swierstra, “A Tutorial Implementation of a De-

pendently Typed Lambda Calculus,” Fundamenta Informaticae, vol. 102, no.
2, pp. 177–207, 2010, doi: 10.3233/FI-2010-304. [Online]. Available: https:
//www.andres-loeh.de/LambdaPi/LambdaPi.pdf. [Accessed: 25-Jun-2020]

[2] H. Barendregt, “Introduction to generalized type systems,” Journal of Functional
Programming, vol. 1, no. 2, 1991, doi: 10.1017/S0956796800020025. [Online].
Available: https://www.researchgate.net/publication/216300104_An_Introducti
on_to_Generalized_Type_Systems. [Accessed: 26-Jun-2020]

[3] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini, “A filter lambda model
and the completeness of type assignment,” Journal of Symbolic Logic, vol. 48, no.
4, 1983, doi: 10.2307/2273659. [Online]. Available: https://www.cambridge.org/
core/journals/journal-of-symbolic-logic/article/filter-lambda-model-and-the
-completeness-of-type-assignment1/1F49872479426AFCB5DC777FA22509E0.
[Accessed: 25-Jun-2020]

[4] G. Barthe and M. H. Sørensen, “Domain-free pure type systems,” in Logical
foundations of computer science, 1997, doi: 10.1007/3-540-63045-7_2 [Online].
Available: https://link.springer.com/chapter/10.1007/3-540-63045-7_2.
[Accessed: 24-Jun-2020]

[5] D. R. Christiansen, “Bidirectional Typing Rules: A Tutorial.” 17-Sep-2013 [On-
line]. Available: https://davidchristiansen.dk/tutorials/bidirectional.pdf.
[Accessed: 02-Mar-2020]

[6] B. C. Pierce and D. N. Turner, “Local Type Inference,” ACM Transactions on
Programming Languages and Systems, vol. 22, no. 1, pp. 1–44, Jan. 2000, doi:
10.1145/345099.345100. [Online]. Available: https://dl.acm.org/doi/10.1145/345
099.345100. [Accessed: 22-Jun-2020]

[7] L. Augustsson, “Cayenne — a language with dependent types,” in Proceedings
of the third ACM SIGPLAN international conference on functional programming,
1998, doi: 10.1145/289423.289451 [Online]. Available: https://dl.acm.org/doi/10.
1145/289423.289451. [Accessed: 25-Jun-2020]

64

https://doi.org/10.3233/FI-2010-304
https://www.andres-loeh.de/LambdaPi/LambdaPi.pdf
https://www.andres-loeh.de/LambdaPi/LambdaPi.pdf
https://doi.org/10.1017/S0956796800020025
https://www.researchgate.net/publication/216300104_An_Introduction_to_Generalized_Type_Systems
https://www.researchgate.net/publication/216300104_An_Introduction_to_Generalized_Type_Systems
https://doi.org/10.2307/2273659
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/filter-lambda-model-and-the-completeness-of-type-assignment1/1F49872479426AFCB5DC777FA22509E0
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/filter-lambda-model-and-the-completeness-of-type-assignment1/1F49872479426AFCB5DC777FA22509E0
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/filter-lambda-model-and-the-completeness-of-type-assignment1/1F49872479426AFCB5DC777FA22509E0
https://doi.org/10.1007/3-540-63045-7_2
https://link.springer.com/chapter/10.1007/3-540-63045-7_2
https://davidchristiansen.dk/tutorials/bidirectional.pdf
https://doi.org/10.1145/345099.345100
https://dl.acm.org/doi/10.1145/345099.345100
https://dl.acm.org/doi/10.1145/345099.345100
https://doi.org/10.1145/289423.289451
https://dl.acm.org/doi/10.1145/289423.289451
https://dl.acm.org/doi/10.1145/289423.289451

Design and Algebraic Implementation of a Functional Programming Language Conclusion

[8] T. Coquand, “An Analysis of Girard’s Paradox,” in Proceedings of the first annual
IEEE symposium on logic in computer science (LICS 1986), 1986.

[9] N. G. de Bruijn, “Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem,” Indagationes Mathematicae (Proceedings), vol. 75, no. 5, 1972, doi:
10.1016/1385-7258(72)90034-0. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/1385725872900340. [Accessed: 17-May-2020]

[10] P. Padawitz, “Übersetzerbau (Algebraic Compiler Construction),” Fakultät für
Informatik, TU Dortmund [Online]. Available: https://fldit-www.cs.uni-dortm
und.de/~peter/CbauFolien.pdf. [Accessed: 25-Jun-2020]

[11] R. C. Moore, “Removing Left Recursion from Context-Free Grammars,” in Pro-
ceedings of the 1st north american chapter of the association for computational
linguistics conference, 2000, doi: 10.5555/974305.974338 [Online]. Available:
https://dl.acm.org/doi/abs/10.5555/974305.974338. [Accessed: 06-Jul-2020]

[12] A. Stump, “The Calculus of Dependent Lambda Eliminations,” Journal of Func-
tional Programming, vol. 27, 2017, doi: 10.1017/S0956796817000053. [Online].
Available: https://www.cambridge.org/core/journals/journal-of-functional-pro
gramming/article/calculus-of-dependent-lambda-eliminations/1D0BDA070E92
73AC56C108D8F6F2B078. [Accessed: 06-Jul-2020]

65

https://doi.org/10.1016/1385-7258(72)90034-0
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://fldit-www.cs.uni-dortmund.de/~peter/CbauFolien.pdf
https://fldit-www.cs.uni-dortmund.de/~peter/CbauFolien.pdf
https://doi.org/10.5555/974305.974338
https://dl.acm.org/doi/abs/10.5555/974305.974338
https://doi.org/10.1017/S0956796817000053
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/calculus-of-dependent-lambda-eliminations/1D0BDA070E9273AC56C108D8F6F2B078
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/calculus-of-dependent-lambda-eliminations/1D0BDA070E9273AC56C108D8F6F2B078
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/calculus-of-dependent-lambda-eliminations/1D0BDA070E9273AC56C108D8F6F2B078

	Introduction
	Structure

	Theoretical Foundation
	Simply Typed Lambda Calculus
	Dependently Typed Lambda Calculus
	De Bruijn Indices
	Algebraic Modeling
	Custom Data Types and Eliminators

	Methods
	Haskell
	Parsing
	Shell
	Algebraic Modeling

	Design
	Design Goals
	Architecture
	Terms
	Programs

	Implementation
	Abstract Syntax Tree
	Parser
	Compilation
	Evaluator
	Type Checker
	Frontends

	Evaluation
	Usage
	Discussion and Outlook

	Conclusion
	References

